15.003 SOFTWARE TooLS — DATA SCIENCE AFSHINE AMIDI & SHERVINE AMIDI

Study Guide: Data Retrieval with SQL Category | Operator Command
Equality / non-equality | =/ !=, <>
Inequalities >=, >, <, <=
Afshine AMIDI and Shervine AMIDI Belonging IN (val_1, ..., val_n)
General
And / or AND / OR
AugUSt 21’ 2020 Check for missing value | IS NULL
Between bounds BETWEEN val_1 AND val_2
Strings Pattern matching LIKE
General concepts

O Structured Query Language — Structured Query Language, abbreviated as SQL, is a

language that is largely used in the industry to query data from databases. 0 Joins — Two tables table_1 and table_2 can be joined in the following way:

O Query structure — Queries are usually structured as follows: SQL
SQL FROM table_1 t1
-- Select fields mandatory type_of_join Eable_z t2
SELECT ON (t2.key = t1.key)
col_1,
col_2,
col_n where the different type_of_join commands are summarized in the table below:
= § f dat dat . N
FROMoglc)ieot ata UEIR LRI Type of join Illustration
-- Gather info from other sources optional
JOIN other_table ot INNER JOIN
ON (t. = ot.key)
-- Conditions optional
WHERE some_condition(s)
-- Aggregating optional LEFT JOIN
GROUP BY column_group_list
-- Sorting values optional
ORDER BY column_order_list
RIGHT JOIN
-- Restricting aggregated values optional
HAVING some_condition(s)
-= Limiting number of rows optional
LIMIT some_value FULL JOIN ‘
Remark: the SELECT DISTINCT command can be used to ensure not having duplicate rows.
O Condition — A condition is of the following format: Remark: joining every row of table 1 with every row of table 2 can be done with the CROSS JOIN
command, and is commonly known as the cartesian product.
SQL
some_col some_operator some_col_or_value .
Aggregations
where some_operator can be among the following common operations: O Grouping data — Aggregate metrics are computed on grouped data in the following way:

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1 https://www.mit.edu/~amidi

15.003 SOFTWARE TooLS — DATA SCIENCE

AFSHINE AMIDI & SHERVINE AMIDI

col 1 . col_n some_cols col 1

. col_n agg_metric

The SQL command is as follows:

SQL

SELECT
col_1,
agg_function(col_2)
FROM table
GROUP BY col_1

O Grouping sets — The GROUPING SETS command is useful when there is a need to compute
aggregations across different dimensions at a time. Below is an example of how all aggregations
across two dimensions are computed:

SQL

SELECT
col_1,
col_2,
agg_function(col_3)

FROM table

GROUP BY (

GROUPING SETS

(col_1),
(col_2),
(col_1, col_2)

O Aggregation functions — The table below summarizes the main aggregate functions that
can be used in an aggregation query:

Category | Operation Command
Mean AVG(col)
Percentile PERCENTILE_APPROX(col, p)
Values Sum / # of instances SUM(col) / COUNT(col)
Max / min MAX(col) / MIN(col)
Variance / standard deviation | VAR(col) / STDEV(col)
Arrays Concatenate into array collect_list(col)

Remark: the median can be computed using the PERCENTILE_APPROX function with p equal to 0.5.

0O Filtering — The table below highlights the differences between the WHERE and HAVING com-
mands:

WHERE HAVING

- Filter condition applies to individual rows
- Statement placed right after FROM

- Filter condition applies to aggregates
- Statement placed right after GROUP BY

Remark: if WHERE and HAVING are both in the same query, WHERE will be executed first.

Window functions

0 Definition — A window function computes a metric over groups and has the following struc-
ture:
col_1

. col_n some_cols col_1

. col_n win_metric

The SQL command is as follows:

SQL
some_window_function() OVER(PARTITION BY some_col ORDER BY another_col)

Remark: window functions are only allowed in the SELECT clause.

O Row numbering — The table below summarizes the main commands that rank each row
across specified groups, ordered by a specific column:

Command Description Example
ROW_NUMBER() | Ties are given different ranks 1,2,3,4
RANK () Ties are given same rank and skip numbers 1,2,2, 4
DENSE_RANK() | Ties are given same rank and don’t skip numbers | 1, 2, 2, 3

O Values — The following window functions allow to keep track of specific types of values with
respect to the partition:

Command Description

FIRST_VALUE(col) Takes the first value of the column

LAST_VALUE (col) Takes the last value of the column

LAG(col, n) Takes the ntP previous value of the column

LEAD(col, n) Takes the n? following value of the column

NTH_VALUE(col, n) | Takes the ntP value of the column

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

https://www.mit.edu/~amidi

15.003 SOFTWARE TooLS — DATA SCIENCE

AFSHINE AMIDI & SHERVINE AMIDI

Advanced functions

0O SQL tips — In order to keep the query in a clear and concise format, the following tricks are
often done:

Operation Command Description
Renaming . New column names shown in
operation_on_column col_name
columns query results
Abbreviating Abbrev1atl?n u§e.d W'.lthln
table_1 t1 query for simplicity in

tables .

notations

. e Specify column position in
Simplifyin,
PHLYINg col_number_list clause instead of

group by

whole column names
Limitin,

& n Display only n rows

results

0 Sorting values — The query results can be sorted along a given set of columns using the
following command:

SQL

[query] ...
col_list

Remark: by default, the command sorts in ascending order. If we want to sort it in descending
order, the command needs to be used after the column.

0 Column types — In order to ensure that a column or value is of one specific data type, the
following command is used:

SQL

(some_col_or_value data_type)

where data_type is one of the following;:

Data type | Description Example

INT Integer

DOUBLE Numerical value

STRING

String

VARCHAR

DATE Date
TIMESTAMP Timestamp

Remark: if the column contains data of different types, the
unknown types to instead of throwing an error.

0O Column manipulation — The main functions used to manipulate columns are described in
the table below:

O command will convert

Category | Operation Command
Take first non- value (col_1, col_2, ., col_n)
General Create a new column
. . (col_1, ., col_n)
combining existing ones
Value Round value to n decimals (col, n)
Converts string column to
(col) / (col)
lower / upper case
Rep%ace occurrences of (col, old, new)
old in col to new
String Take the substring of col
? ¢ e.su SLINg Oof €0 (col, start, length)
with a given start and length
Remove spaces from the (col) / (col) / (col)
co co co
left / right / both sides
Length of the string (col)
Truncate at a given granularity . . .
(time_dimension, col_date)
Date (year, month, week)
Transform date (col_date, number_of_days)

0 Conditional column — A column can take different values with respect to a particular set
of conditions with the command as follows:

SQL

some_condition some_value

some_other_condition some_other_value

some_other_value_n

0O Combining results — The table below summarizes the main ways to combine results in
queries:

Category Command | Remarks
Guarantees distinct rows
Union Potential newly-formed duplicates are kept
Intersection Keeps observations that are in all selected queries

O Common table expression — A common way of handling complex queries is to have tem-

porary result sets coming from intermediary queries, which are called common table expressions

(abbreviated CTE), that increase the readability of the overall query. It is done thanks to the
- . command as follows:

SQL
cte_1 (

),

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

https://www.mit.edu/~amidi

15.003 SOFTWARE TooLS — DATA SCIENCE

AFSHINE AMIDI & SHERVINE AMIDI

cte_n (

Table manipulation
 Table creation — The creation of a table is done as follows:

SQL

[table_type]
col_1 data_type_1,

[creation_type] table_name(

col_n data_type_n

[options];

where [table_type], [creation_type] and [options] are one of the following:

Category Command Description
Blank Default table
Table t
able type External table
Creates table and overwrites current
Blank e .
Creation type one if it exists
IF Only creates table if it does not exist

Populate table with data

Options from hdfs folder

Stores the table in a specific data

as data_format
format, e.g. parquet, orc or avro

0 Data insertion — New data can either append or overwrite already existing data in a given
table as follows:

SQL
-- optional
[insert_type] table_name

-- mandatory

o8 -- mandatory

where [insert_type] is among the following:

Command | Description

Overwrites existing data

Appends to existing data

O Dropping table — Tables are dropped in the following way:

SQL

table_name;

0 View — Instead of using a complicated query, the latter can be saved as a view which can
then be used to get the data. A view is created with the following command:

SQL

view_name complicated_query;

Remark: a view does not create any physical table and is instead seen as a shortcut.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

https://www.mit.edu/~amidi

