
Devinterview-io / django-interview-questions Public

🟣 Django interview questions and answers to help you prepare for your next technical interview in 2024.

50 stars 11 forks Branches Tags Activity

1 Branch 0 Tags Go to file Go to file Code

Devinterview-io Update README.md 65b79f7 · last year

README.md Update README.md last year

Django is a high-level Python web framework celebrated for its emphasis on simplifying complex tasks and following the "Don't

Repeat Yourself" (DRY) and "model-template-views" (MTV) paradigms. It's renowned for rapid development, robustness, and vast

ecosystem of packages.

Object-Relational Mapping : Enables database interactions using Python objects.

Admin Panel : Generates a user-friendly interface for database management.

URL Mapping : Routes web requests based on URLs, using urls.py files.

Template Engine : Processes HTML templates, separating design from logic.

Form Handling : Simplifies form validation and rendering.

Security : Offers built-in protections against common web vulnerabilities.

Middleware : Allows global request/response customization.

Simplified Queries : Provides a high-level query API for database operations.

Shared Components : Supports pluggable apps for easy component sharing.

Auto-Documentation : Generates documentation for models and their attributes.

File Handling : Provides utilities for file uploads and serving.

Asynchronous Support : Enhanced in recent versions to handle asynchronous tasks.

Versatility : Compatible with various web servers, databases, and front-end frameworks.

Scalability : Adaptable to large, high-traffic projects.

Package Ecosystem : A rich collection of "pypi" packages complements Django's core features.

Built-in Cache : Offers caching support for performance optimization.

Internationalization : Facilitates multi-language support.

REST Framework : Offers extensive support for building RESTful APIs.

 Star Notifications

Code Issues Pull requests Actions Projects Security Insights

main

Top 70 Django Interview Questions

You can also find all 70 answers here 👉 Devinterview.io - Django

1. What is Django and what are its key features?

Key Features

README

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 1/14

https://github.com/Devinterview-io
https://github.com/Devinterview-io/django-interview-questions
https://github.com/Devinterview-io/django-interview-questions/stargazers
https://github.com/Devinterview-io/django-interview-questions/stargazers
https://github.com/Devinterview-io/django-interview-questions/forks
https://github.com/Devinterview-io/django-interview-questions/forks
https://github.com/Devinterview-io/django-interview-questions/branches
https://github.com/Devinterview-io/django-interview-questions/tags
https://github.com/Devinterview-io/django-interview-questions/activity
https://github.com/Devinterview-io/django-interview-questions/branches
https://github.com/Devinterview-io/django-interview-questions/tags
https://github.com/Devinterview-io/django-interview-questions/branches
https://github.com/Devinterview-io/django-interview-questions/tags
https://github.com/Devinterview-io
https://github.com/Devinterview-io/django-interview-questions/commits?author=Devinterview-io
https://github.com/Devinterview-io/django-interview-questions/commit/65b79f7d64af8dc0148a481ba49837af776d3931
https://github.com/Devinterview-io/django-interview-questions/commit/65b79f7d64af8dc0148a481ba49837af776d3931
https://github.com/Devinterview-io/django-interview-questions/blob/main/README.md
https://github.com/Devinterview-io/django-interview-questions/commit/65b79f7d64af8dc0148a481ba49837af776d3931
https://devinterview.io/questions/web-and-mobile-development/
https://devinterview.io/questions/web-and-mobile-development/
https://github.com/login?return_to=%2FDevinterview-io%2Fdjango-interview-questions
https://github.com/login?return_to=%2FDevinterview-io%2Fdjango-interview-questions
https://github.com/Devinterview-io/django-interview-questions
https://github.com/Devinterview-io/django-interview-questions/issues
https://github.com/Devinterview-io/django-interview-questions/pulls
https://github.com/Devinterview-io/django-interview-questions/actions
https://github.com/Devinterview-io/django-interview-questions/projects
https://github.com/Devinterview-io/django-interview-questions/security
https://github.com/Devinterview-io/django-interview-questions/pulse
https://github.com/Devinterview-io/django-interview-questions/commits/main/
https://devinterview.io/questions/web-and-mobile-development/django-interview-questions

Django is built around the MVT (Model-View-Template), which is nearly identical to the more commonly known MVC (Model-View-

Controller) pattern. Here’s a breakdown of the core components in Django's MVT:

Model (MVC equivalent): Responsible for data access and business logic. A model in Django is typically a Python class that

represents a database table.

View (MVC equivalent: Responsible for presenting data): Handles user input, processes requests, and returns appropriate

responses. In newer versions of Django, the view is more akin to a controller and is responsible for the logical flow of the

application.

Template (MVC equivalent): Responsible for the presentation and user interface. A template in Django is an HTML file that utilizes

its templating language to dynamically render data.

1. Client Request: A user initiates an action, for example by clicking on a link in a web browser.

2. URL Dispatcher: The URL dispatcher (in newer versions, the 'path' or 're_path' function) maps the incoming URL to a

corresponding view.

3. View Processing: The view performs any necessary logic, such as retrieving data from the database using models.

4. Response Building: The view sends the data to a template for rendering and then returns an HTTP response to the client.

5. Template Rendering: If a template is used, it processes the data and renders the HTML, which is then included in the response.

Model: Adheres closely to the MVT and MVC paradigms, representing data and business rules.

View vs. Controller: In MVT, the view correlates more closely to the traditional concept of a controller. This is because it processes

incoming requests, interacts with models as needed, and oversees the flow of the application.

Template vs. View: The MVT view is akin to the MVC view, responsible for presenting data to the user. The MVT view, however, also

processes user requests, whereas the MVC view is more passive and simply displays data provided by the controller. The MVT

template is analogous to the MVC view in that it focuses on the presentation layer.

Django Project is the high-level umbrella under which you build a web application. It encompasses multiple components such as

settings, URLs, and can host several apps.

In contrast, a Django App is a standalone module designed to serve a specific functionality or business area, following the concept of

"application" as a group of related features.

Settings: Configuration options for the project and its apps.

URLs: Defines the endpoint mappings using urls.py .

WSGI/ASGI: Entry points for the web server to serve the project, handling HTTP and WebSocket requests, respectively.

Models: Data layer, defining data structures using models.py.

Views: Business logic and presentation layer.

Templates (optional): Presentation layer, housing HTML and rendering logic.

URLs: Endpoint mappings for the app, known as "scoped URLs".

Here is the folder structure.

2. Explain the MTV (Model-Template-View) architecture pattern in Django.

MVT Components

Request-Response Lifecycle

Relationship with MVC

3. What is a Django project and how is it different from a Django app?

Key Components of a Django Project

Key Components of a Django App

Code Example: Project and App Structure

myproject/ # Django Project
 manage.py # Project Management Utility
 myproject/ # Project Directory

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 2/14

It shows the typical structure where a project contains one or more apps.

The settings.py file in a Django project is crucial for configuring the project, including its applications and external resources. It

allows for customization and control over various aspects of the Django project.

Global Settings: Manages project-wide configurations such as installed applications, middleware, URLs, and more.

Dynamic Configuration: Utilizes environment variables to secure sensitive data and allows for different configurations in

development, testing, and production environments.

Security and Debugging: Provides options for CSRF protection, session management, and detailed error handling.

Database Setup: Offers flexibility to work with different databases, including SQLite, MySQL, PostgreSQL, and others.

Internationalization and Localization: Facilitates multi-language support for web applications.

Customization and Extensibility: Supports third-party app integration and allows for the creation of custom AppConfig classes.

Centralized Configuration: Eliminates the need for scattered config files and ensures all settings are conveniently located.

Adaptability: Its modifiability caters to evolving project requirements and changing deployment environments.

Consistency: Promotes a uniform configuration setup across development, testing, and production stages.

Version Control: In multi-developer setups, tracking changes to this file ensures everyone is on the same configuration page.

1. Installed Applications:

Identifying project-specific apps for features such as authentication, REST APIs, etc.

2. Middleware:

Global request/response handling, like CORS or authentication.

3. Database Configuration:

Choosing the target database, setting up primary database connections.

4. Static and Media Files:

Configuring file storage for user-uploaded content.

5. Internationalization:

Enabling and configuring multi-language support.

6. Security and Debugging:

Managing settings like DEBUG mode, CORS policies, and SSL/HTTPS requirements.

7. Custom AppConfigs:

Fine-tuning settings for specific Django apps or handling app initialization routines.

8. Environmental Variables:

Using keys, secrets, or sensitive data from the environment for security and flexibility.

 settings.py
 urls.py
 wsgi.py
 asgi.py
 myapp1/ # Django App 1
 myapp2/ # Django App 2
 ...

4. Describe the purpose of the settings.py file in a Django project.

Key Features

Importance of settings.py

Example Use-Cases

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 3/14

9. Testing and CI:

Adjusting configurations for automated testing and continuous integration pipelines.

In Django, the urls.py file plays a key role in routing and mapping URLs to views. Each app typically has its own urls.py for

modular URL handling.

Global (project.urls): The project's main urls.py generally includes paths to various apps.

Local (app.urls): Each app's urls.py handles its specific URL mappings.

Every urls.py file uses URL patterns, defined with path() or re_path() .

path(): For simple text-based URLs.

re_path(): For complex URLs using regular expressions.

The path() function's view argument typically points to the corresponding view function. You can also send additional data, like

query parameters or URL segments.

In the example, the URL pattern directs any request to /articles/2023/ to the special_case_2003 view.

Here, the URL pattern sends any matching URL (like /articles/2022/) and the extracted year to the year_archive view.

Consistency: Follow a clear and standardized URL structure.

Namespacing: Employ app namespaces to avoid URL name clashes.

Template Integration: Use reverse() and redirect() to decouple URLs from views.

Django's ORM bridges the gap between relational databases and Python objects. This integration allows you to perform database

operations using high-level Pythonic methods, rather than direct SQL queries.

The three fundamental components of Django's ORM are:

5. What is the role of the urls.py file in a Django project?

Global URLs vs. App URLs

URL Patterns

Passing URLs to Views

Example: path()

from django.urls import path
from . import views

urlpatterns = [
 path('articles/2023/', views.special_case_2003),
]

Example: path() with Parameters

from django.urls import path
from . import views

urlpatterns = [
 path('articles/<int:year>/', views.year_archive),
]

URL Handling Best Practices

6. Explain the concept of Django's ORM (Object-Relational Mapping).

Core Components

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 4/14

1. Models: Defined in models.py , they specify the database structure in a class-based syntax.

2. Model Instances: These are objects created from your models and represent specific database records.

3. QuerySets: These are high-level, chainable, and lazy-evaluated database queries that allow you to interact with your model

instances.

Model Classes: These are Python classes that inherit from django.db.models.Model . Each class attribute represents a database

field.

Field Types: Django provides a range of field types (such as CharField , IntegerField , and ForeignKey) to cover diverse data

requirements.

Model Relationships: Models can be related to one another, for example, in a one-to-many or many-to-many configuration.

Manager Methods: Objects of the models.Manager class provide utility functions for database access. Every model has at least

one manager, typically named objects .

QuerySet Methods: The objects attribute of a model provides a QuerySet . This can be filtered, sorted, and manipulated in

various ways before evaluation.

Portability and Flexibility: Applications developed on top of the ORM can quickly adapt to different database backends.

Security: The ORM offers protections against common security threats like SQL injection.

Productivity: Higher abstraction levels reduce the need for intricate database-specific code, resulting in quicker development

cycles.

Here is a simple model in Django:

Django Models form the architectural foundation for database-driven applications. A model serves as a data structure and includes

essential fields and behaviors.

A model class is a Python subclass of django.db.models.Model . Each attribute within the class represents a database field.

The model class specifies the database table name, any data relationships, metadata, and methods for data manipulation.

Key Concepts

Benefits of Using ORM

Code Example: ORM in Action

from django.db import models

class Author(models.Model):
 name = models.CharField(max_length=100)

class Book(models.Model):
 title = models.CharField(max_length=100)
 author = models.ForeignKey(Author, on_delete=models.CASCADE)
 published_date = models.DateField()

 @property
 def is_recent(self):
 return self.published_date > some_logic_to_get_recent_date()

Querying examples:

Get all books published in the last year, written by authors with a name starting with 'A', and order them by title
recent_books = Book.objects.filter(published_date__gt=one_year_ago, author__name__istartswith='a').order_by('title')

Get the top 5 authors with the most books:
top_authors = Author.objects.annotate(num_books=models.Count('book')).order_by('-num_books')[:5]

7. What is a Django model and how is it defined?

Model Definition

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 5/14

Definition: Represent the table's columns.

Types: e.g., CharField , DateField .

Primary Key: id is default or can be customized.

Descriptors: Define field attributes e.g., null , blank .

table_name: Database table name.

unique_together: A list of tuples for fields that should be unique when considered together.

ordering: Default result order.

Objects: Custom data managers.

__str__(): Human-readable instance name for admin and more.

Here is the Django code for the Author and Book model which demonstrates relationships between the two models:

In this example:

Author and Book are model classes, each with its own table and fields in the database.

Author has a ManyToMany relationship with Genre through the Book model.

ForeignKey , linking Book to Author , establishes a one-to-many relationship.

The ForeignKey indicates each Book relates to one Author, while the cascade on_delete specifies that if an Author is deleted, all their

books are also deleted.

The Django admin interface is a powerful tool that automatically generates a user-friendly interface for performing common data

management tasks, such as creating, reading, updating, and deleting (CRUD operations) for your application's models.

Quick Implementation: Provides out-of-the-box tools for data management, requiring minimal setup.

Model-Centric Interface: Operations are organized based on your application's data models.

DRY (Don't Repeat Yourself) Philosophy: Changes to your models are automatically reflected in the admin interface.

Key Model Components

Fields

Meta Options

Methods

Example: Model Code

from django.db import models

class Author(models.Model):
 name = models.CharField(max_length=100)
 birth_date = models.DateField()

 def __str__(self):
 return self.name

class Book(models.Model):
 title = models.CharField(max_length=100)
 author = models.ForeignKey(Author, on_delete=models.CASCADE)
 published_date = models.DateField()
 genres = models.ManyToManyField('Genre')

 def __str__(self):
 return self.title

class Genre(models.Model):
 name = models.CharField(max_length=100)

 def __str__(self):
 return self.name

8. Describe the purpose of Django's admin interface.

Key Features

Common Admin Actions

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 6/14

Database Records: View, add, edit, and delete records.

Data Relationships: Navigate through foreign key and many-to-many relationships.

Data Validation: Basic field-level validation is performed.

Rapid Prototyping: For quick feedback or proof of concept.

Administrative Tasks: For internal tools or during early project stages.

Quick Data Fixes: Ad-hoc data corrections or debugging.

Here is the Python code:

Production Client-Facing UI: The admin interface is not designed for public, customer-facing views. It's preferable to create

custom views using Django's forms and templating for public consumption.

Complex Data Operations: For intricate data management or workflows, a custom UI provides better control and user experience.

Here is the Python code:

A Django view functions as an endpoint for web requests. It retrieves data from a database, processes it as needed, and then returns

a response, which can be an HTML page, a redirect, or a JSON object, among others.

Function-Based Views (FBV): These are created using functions.

Class-Based Views (CBV): These are created using classes and offer a more structured approach, often with built-in features like

HTTP method handling and view mixins.

1. Define the View Function or Class: This entails specifying the unique logic for the view. In the case of a function-based view, it's a

Python function with the @ decorator and an HTTP method. For a class-based view, you define a class with specific method names

for different HTTP methods.

2. Map the View to a URL: Every view must be associated with a URL pattern to be accessible. This is orchestrated in the urls.py

file. You can use either path or re_path for simple or advanced URL matching, respectively.

When to Use and When Not to Use the Admin Interface

When to Use

Code Example: Setting Up the Admin Interface

from django.contrib import admin
from .models import MyModel

@admin.register(MyModel)
class MyModelAdmin(admin.ModelAdmin):
 list_display = ('field1', 'field2', 'some_method', 'related_field__nested_field')
 list_filter = ('field1', 'field2')
 search_fields = ('field1', 'field2', 'related_field__nested_field__name')

 def some_method(self, obj):
 return obj.field1 + " - " + obj.field2
 some_method.short_description = 'Custom Description'

When Not to Use

Admin Interface in urls.py

from django.contrib import admin
from django.urls import path

urlpatterns = [
 path('admin/', admin.site.urls),
 # ...
]

9. What is a Django view and how is it created?

Types of Views

Steps to Create a Django View

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 7/14

3. Handle the Request and Generate a Response: In the view, the HTTP request is received and parsed as needed. The response

should adhere to the view's requirements, which could mean rendering a template, redirecting the user, or returning specific data

types (e.g., JSON).

Here is the Django view-specific code:

Here is the Django view-specific code:

In a Django MVC (Model-View-Template) setup, the URL configuration functions as a mediator between the view and the model,

handling incoming HTTP requests and ensuring an appropriate view responds.

In more complex web applications, this strategy allows for a clear separation of concerns, making both maintenance and expansion

more straightforward.

In Django, URL patterns direct web requests to the appropriate view for processing. They are defined in the urls.py file of each app

and can be simple strings or regular expressions.

Basic Syntax: A URL pattern is a string matching the incoming request's path. For a match to occur, the URL pattern from urls.py

must be identical to the request path.

Example:

In this example, only requests to /articles/2022/ will match.

For more advanced matching, Django allows the use of regular expressions.

Code Example: Function-Based View

views.py

from django.http import HttpResponse
from django.shortcuts import render

def my_view(request):
 # Business logic, such as database queries or form processing
 data = ...

 # Return a rendered template or a custom HTTP response
 return render(request, 'template.html', {'data': data})

Code Example: Class-Based View

views.py

from django.views import View
from django.http import JsonResponse

class JSONResponseView(View):
 def get(self, request):
 return JsonResponse({'key': 'value'})

 def post(self, request):
 return JsonResponse({'key': request.POST['data']})

Routing and URL configuration

10. Explain the concept of URL patterns in Django.

Basic URL Patterns

from django.urls import path
from . import views

urlpatterns = [
 path('articles/2022/', views.article_2022),
]

Regular Expressions for Advanced URL Patterns

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 8/14

Syntax: Such patterns open with ^ and end with $ to indicate the full path. This syntax gives flexibility in pattern matching.

Example:

Here, requests to paths like /articles/2022/ will match, and the year part will be captured and sent to the associated view.

Django provides several helper functions to streamline URL pattern definitions:

path(): For simple matching based on the path.

re_path(): For using regular expressions.

include(): Enables URL grouping and delegation to other URL config files.

For many projects, basic string matching in path() functions suffices. This approach enhances readability and maintainability.

Clear URL designs improve both developer and user experiences.

Assigning names to URLs via path() and re_path() aids in referencing URLs in templates, keeping code DRY (Don't Repeat Yourself).

Database migrations in Django are changes to the database schema, ensuring it stays in sync with the evolving data models. Each

migration is represented as a Python file, making alterations via the django.db.migrations module.

Migration Files: These are generated sequentially and outline the changes to be applied to the database.

Migrations Modules: A collection of related migration files.

Migration Plan: A record of applied and unapplied migrations.

Version Control: Migrations are text-based, making them ideal for version control systems like Git.

Data Integrity: They help ensure that data remains consistent as the schema evolves.

Collaboration: Simplifies team collaboration and deployment processes.

Adaptability: Migrations can be tailored for different databases, such as PostgreSQL or MySQL.

1. Initial Migration: Generate the initial database schema from models.

2. Apply Migrations: Execute the pending migrations on the database.

3. Migrations Plan: Check the status of migrations.

from django.urls import re_path
from . import views

urlpatterns = [
 re_path(r'articles/(\d{4})/', views.article_year),
]

URL Pattern Helpers

Best Practices

Keep URLs Simple

Use Unambiguous URL Designs

Leverage Named URLs

11. What is a database migration in Django and why is it important?

Key Components

Why Use Migrations?

Basic Migration Commands

python manage.py makemigrations

python manage.py migrate

python manage.py showmigrations

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 9/14

Advanced developers may often require more intricate migration commands and functionalities. Fortuitously, Django offers a versatile

array of options to accommodate those needs.

In Django models, relationships can be established using either a ForeignKey or a ManyToManyField, each serving a unique purpose.

A ForeignKey sets up a many-to-one relationship. It's used when each record in the current model needs to be associated with exactly

one record in another model.

A Book has one Publisher .

This is represented by a ForeignKey in the Book model pointing to the Publisher model.

A ManyToManyField is used when a record in one model can be associated with multiple records in another, and vice versa.

It facilitates a many-to-many relationship where multiple records in one model can be linked to multiple records in another.

A Student can enroll in multiple Course s, and a Course can have multiple students enrolled.

This many-to-many relationship is represented using a ManyToManyField with an intermediary table.

Sometimes, the relationship between the two models needs to have additional fields. ManyToManyField allows you to specify a custom

intermediary model using the through parameter.

Here is an example:

You have a Music Library and want to associate Song s with Playlist s, but you also want to track the order of the songs in each

playlist.

You would use a model like PlaylistSong as the intermediary model.

12. Explain the difference between a ForeignKey and a ManyToManyField in Django
models.

ForeignKey

Example:

Code Example (ForeignKey):

from django.db import models

class Publisher(models.Model):
 name = models.CharField(max_length=100)

class Book(models.Model):
 title = models.CharField(max_length=100)
 publisher = models.ForeignKey(Publisher, on_delete=models.CASCADE)

ManyToManyField

Many-to-Many Relationship

Example:

Code Example (ManyToManyField):

from django.db import models

class Course(models.Model):
 name = models.CharField(max_length=100)

class Student(models.Model):
 name = models.CharField(max_length=100)
 courses = models.ManyToManyField(Course)

ManyToManyField with Additional Fields (through):

class Playlist(models.Model):
 name = models.CharField(max_length=100)

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 10/14

Here, the PlaylistSong model contains the additional order field to track the song's order in the playlist.

In Django, you can define a custom model field to encapsulate complex data types, enforce specific behavior, or integrate with external

data sources.

Here is the Python code:

__init__: Initializes custom field attributes.

db_type: Specifies the database column type.

from_db_value: Converts database value to Python object.

to_python: Specifies the Python data type.

get_prep_value: Converts value for storage in the database.

validate: Provides custom data validations.

class Song(models.Model):
 title = models.CharField(max_length=100)
 playlists = models.ManyToManyField(Playlist, through='PlaylistSong')

class PlaylistSong(models.Model):
 song = models.ForeignKey(Song, on_delete=models.CASCADE)
 playlist = models.ForeignKey(Playlist, on_delete=models.CASCADE)
 order = models.IntegerField()
 # Possibly other fields like 'added_by' and 'date_added'

13. How do you define a custom model field in Django?

Custom Model Field Definition

from django.db import models
from django.core.exceptions import ValidationError

class MyCustomField(models.Field):
 description = "A custom field for special data handling."

 def __init__(self, *args, **kwargs):
 # Initialize your custom field attributes here
 super().__init__(*args, **kwargs)

 def db_type(self, connection):
 # Define the database column type
 return 'SOME_DB_TYPE'

 def from_db_value(self, value, expression, connection):
 # Convert the database value to the expected Python object
 if value is not None:
 # Perform any necessary data transformations or validations
 return transformed_value
 return value

 def to_python(self, value):
 # Convert the value to the appropriate Python object type
 if isinstance(value, str):
 return parse_string_value(value)
 return value

 def get_prep_value(self, value):
 # Convert the provided Python value for storage in the database
 return formatted_value

 def validate(self, value, model_instance):
 # Implement custom data validations
 if not is_valid:
 raise ValidationError("Invalid data.")

 def formfield(self, **kwargs):
 # Customize the form field for this model field
 defaults = {'form_class': CustomFormFieldClass}
 defaults.update(kwargs)
 return super().formfield(**defaults)

Field Methods Overview

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 11/14

formfield: Customizes the form field for the field type.

1. Encapsulating Legacy Data: Handle complex or legacy data formats transparently.

2. External Data Integration: Connect to external data sources or APIs for specific data requirements.

3. Advanced Data Validation: Implement custom or advanced data validation rules beyond what validators or clean methods

offer.

4. Specialized Data Types: Manage special data types or structures not covered by standard Django fields.

5. Embedding Business Logic: Integrate data-specific business logic to be carried out at the model or form level.

In Django, a QuerySet represents a collection of database queries that can be chained and lazily executed. It provides an intuitive way

to retrieve and manipulate data from the database using Python.

Initializationic: QuerySets are generated automatically when you interact with a Django model using its Manager.

Chaining: Multiple methods can be chained together before the QuerySet is evaluated.

Lazy Evaluation: QuerySets are only executed when data is required, such as when iterating through the results or explicitly

calling evaluation methods like list() or count() .

Immutability After Evaluation: Once a QuerySet is evaluated, its results cannot be altered. For instance, you can't add more items

to a list after it's been created.

all(): Returns all objects in the QuerySet.

get(): Retrieves a single object that matches the provided criteria.

filter(): Returns a subset of objects that match specific criteria.

exclude(): Returns objects that don't match the specified criteria.

create(): Instantly creates a new object and saves it to the database.

update(): Modifies objects in the database that match the given criteria.

select_related(): Fetches related Many-To-One objects. Efficient for queries with a small number of related objects.

prefetch_related(): Fetches the related objects for a Many-To-Many or reverse ForeignKey relationship.

iterator(): Fetches objects from the database one at a time, useful for large result sets.

get_or_create(): Attempts to fetch an object from the database based on certain criteria and creates it if it doesn't exist.

earliest() and latest(): Retrieve the first and last object, respectively, based on the specified field.

aggregate(): Performs an aggregate function (e.g., Count, Sum, Avg) over the items in the QuerySet.

count(): Returns the number of items in the QuerySet.

bool(): Returns True if the QuerySet contains any results, False otherwise.

exists(): Checks if there are any results that match the query.

order_by(): Orders the QuerySet results based on the specified field.

Use Cases for Custom Fields

14. What is a QuerySet in Django and how is it used?

QuerySet Basics

QuerySet Methods

Data Retrieval

Data Manipulation

Relationship Handling

QuerySet Execution

Aggregation and Metrics

QuerySet Evaluation

QuerySet Execution

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 12/14

reverse(): Reverses the original ordering of the QuerySet.

iterator(): Fetches objects from the database one at a time, useful for large result sets.

first() and last(): Retrieve the first or last object from the QuerySet.

count(): Returns the number of items in the QuerySet.

in_bulk(): Returns a dictionary of objects with their primary keys as the keys.

values() and values_list(): Return dictionaries or tuples, respectively, representing the objects' fields.

distinct(): Removes duplicate results from the QuerySet.

union(): Combines two or more QuerySets into a single, unique QuerySet.

Model inheritance in Django allows you to create new models based on existing ones, leading to efficient code reuse and structured

data management.

1. Abstract Base Classes Inheritance: The parent model (defined as abstract) serves purely as a template and isn't used to create

any database tables on its own.

2. Multi-Table Inheritance: This approach creates separate database tables for the parent model and each of its child models,

maintaining a one-to-one relationship.

1. STI - Single Table Inheritance

2. MTI - Multi-Table Inheritance

3. Concrete Classes vs. Abstract Base Classes

In relational databases, inheritance is handled via table relationships. Django supports both the STI and MTI strategies.

Here is the Django code:

The CommonInfo model here is an abstract base class. It's not directly instantiated in the database but provides fields like name and

age for any model that inherits from it.

The Student model inherits from CommonInfo and therefore shares its fields in addition to its own, like student_id .

The generated SQL for Student will include fields name , age , and student_id .

Slicing and Pagination

QuerySet Convenience Methods

15. Describe the concept of model inheritance in Django.

Model Inheritance Types

Common Inheritance Patterns

Inheritance in Relational Databases

Code Example: Abstract Base Class

from django.db import models

class CommonInfo(models.Model):
 # This acts as an abstract base class.
 name = models.CharField(max_length=100)
 age = models.PositiveIntegerField()

 class Meta:
 # Set 'abstract' to True to make this an abstract base class.
 abstract = True

class Student(CommonInfo):
 # Inherits fields 'name' and 'age' from CommonInfo.
 student_id = models.CharField(primary_key=True, max_length=10)

Code Example: Multi-Table Inheritance

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 13/14

Here is the Django code:

This results in two tables: one for Place with fields name and address , and another for Restaurant with additional fields

serves_hot_dogs and serves_pizza . The Restaurant table has a one-to-one relationship with the Place table.

Releases

No releases published

Packages

No packages published

from django.db import models

class Place(models.Model):
 name = models.CharField(max_length=50)
 address = models.CharField(max_length=80)

class Restaurant(Place):
 serves_hot_dogs = models.BooleanField(default=False)
 serves_pizza = models.BooleanField(default=False)

Explore all 70 answers here 👉 Devinterview.io - Django

4/14/25, 6:36 PM GitHub - Devinterview-io/django-interview-questions: 🟣 Django interview questions and answers to help you …

https://github.com/Devinterview-io/django-interview-questions 14/14

https://devinterview.io/questions/web-and-mobile-development/
https://github.com/Devinterview-io/django-interview-questions/releases
https://github.com/users/Devinterview-io/packages?repo_name=django-interview-questions
https://devinterview.io/questions/web-and-mobile-development/django-interview-questions

