
BackEnd Development

Top 50 Technical Interview Questions for Django Developers

Key Points to Consider When Preparing for an Interview

by Oleh Lohvyn

Backend Developer

Nov, 2024‧
56 min read

Django Basics

Django is one of the most popular web frameworks, enabling developers to quickly build scalable, secure, and

feature-rich web applications. Its flexibility and extensive capabilities make it the go-to choice for businesses of

all sizes, from small startups to global corporations.

Mastering Django is an essential skill for any Python developer. However, landing a job requires more than just

basic knowledge. Many employers assess your expertise through technical interviews that cover theory,

practical skills, and real-world use cases of the framework.

In this article, we’ve compiled the Top 50 Technical Interview Questions for Django Developers to help you

prepare. These questions cover all aspects of Django development: from setting up a project to creating

models, working with templates, ensuring security, and optimizing applications. This guide will help you

confidently ace your interview and deepen your understanding of the framework.

1. What is Django?

Django is a high-level web framework written in Python that allows developers to quickly build secure, scalable,

and feature-rich web applications. It was created to simplify the development of complex, data-driven websites

by providing built-in solutions for common tasks such as URL routing, database management, user

Get Started

C
o
m
p
la
in

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 1/24

https://codefinity.com/

authentication, and more. Django follows the "Don't Repeat Yourself" (DRY) principle, encouraging code reuse

and efficiency.

2. What are the advantages of Django?

The key advantages of Django include:

Speed of development: Django provides many built-in solutions and libraries, allowing developers to rapidly

create web applications without having to build everything from scratch.

Security: Django has built-in features that protect against common web vulnerabilities such as SQL injection,

Cross-Site Request Forgery (CSRF), and Cross-Site Scripting (XSS).

Scalability: Django easily scales for large applications, which is why it’s used by companies like Instagram and

Pinterest.

Active community: Django has a large and active community, ensuring regular updates, support, and

contributions.

Flexibility: Although Django enforces certain standards, it also allows for customization and extension to

meet specific needs.

3. How does the Django MVT architecture work?

Django follows the MVT (Model-View-Template) architecture, which is a variation of the more common MVC

(Model-View-Controller) architecture:

Model: Represents the data of the application and handles interactions with the database. Models define the

structure of the data and handle data processing through Django's ORM.

View: Handles the logic of processing requests and returns responses. Views get data from the models and

send it to the templates for rendering.

Template: Displays the data to the user in the form of HTML. Templates can include dynamic content that is

passed from the view to be rendered in the browser.

4. What is ORM in Django, and how does it work?

ORM (Object-Relational Mapping) in Django is a tool that allows developers to interact with the database using

object-oriented programming rather than writing raw SQL queries. Django's ORM automatically generates SQL

code based on the defined models, enabling developers to interact with the database through Python objects.

For example, when creating a model class in Django, it is automatically mapped to a database table. Instead

of writing SQL queries, developers use Python methods to create, update, delete, and retrieve data from the

database.

5. How do you create a new project in Django?

To create a new Django project, follow these steps:

1. Install Django using pip:

2. Create a new project using the django-admin command:

This command creates a folder with the project name, which contains the basic structure of a Django project.

3. Navigate into the project directory:

pip install django

django-admin startproject project_name

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 2/24

4. Start the development server to check if Django is set up correctly:

You should see a message indicating that the server is running at http://127.0.0.1:8000/ , and you can check

the project in your browser.

These steps will help you create and run a basic Django project.

6. What are Django apps?

In Django, an app is a self-contained module or component that provides specific functionality to a Django

project. An app typically consists of models, views, templates, and other resources related to a specific feature of

the project. For example, you might have an app for user authentication, another for blog posts, and another for

a shopping cart. Django encourages a modular approach, allowing you to organize different features into

separate apps, making it easier to maintain and scale the project. Apps can be reused in multiple projects.

7. What is the Django admin site?

The Django admin site is a built-in, web-based interface that allows administrators to manage and interact with

the data of the Django project. It is automatically generated based on the models defined in the project. Through

the admin site, users can perform CRUD (Create, Read, Update, Delete) operations on the models without writing

any additional code. The admin interface is highly customizable and can be extended with custom fields, forms,

and actions to suit specific needs.

8. What is a Django middleware?

Middleware in Django is a lightweight, low-level function that sits between the web server and the Django

application. It processes requests before they reach the view and processes responses before they are sent back

to the client. Middleware can be used for various purposes, such as request/response processing, session

management, authentication, security checks, and more. Django provides built-in middleware for handling things

like security, sessions, and caching, but you can also write custom middleware to implement specific

functionality.

9. How do you handle static files in Django?

In Django, static files refer to files such as CSS, JavaScript, and images that are not dynamically generated by the

application but are used in the presentation layer. To manage static files:

1. During development, Django automatically serves static files from a folder named static inside the app or

project.

2. For production, you need to collect static files from various apps into a single location using the

collectstatic management command:

3. Django will then serve these files from a designated directory specified in the settings (STATIC_ROOT), and

they can be served by a web server like Nginx or Apache.

10. What is Django’s URL dispatcher?

cd project_name

python manage.py runserver

python manage.py collectstatic

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 3/24

Run Code from Your Browser

- No Installation Required

Get started

Django Models

Django’s URL dispatcher is responsible for mapping incoming requests to the appropriate view. It works by using

URL patterns defined in the urls.py file, which is part of each Django app or project. The dispatcher matches the

requested URL to one of the patterns and then calls the corresponding view function to handle the request.

URL patterns are defined using regular expressions or path converters, and you can also include parameters in

the URL, which can be passed to the view function for further processing.

For example, a simple URL pattern might look like this:

These are the answers to the next five questions in the "Basics of Django" section.

from django.urls import path

from . import views

urlpatterns = [

 path('home/', views.home_view),

]

1

2

3

4

5

6

1. What is a model in Django?

A model in Django is a Python class that defines the structure of the data for the application. It acts as a blueprint

for database tables, mapping the fields of the model to columns in the corresponding database table. Models are

the central part of Django's ORM (Object-Relational Mapping) system, allowing you to interact with the database

using Python code instead of raw SQL. Models define fields (e.g., CharField , IntegerField , DateField) and

methods for accessing and manipulating the data.

2. How do you create a model and apply migrations?

To create a model in Django:

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 4/24

1. Define a class that inherits from django.db.models.Model .

2. Add fields to the class, using Django's built-in field types.

3. After defining the model, run migrations to apply the changes to the database.

Step 1: Create a migration for the model by running the following command:

Step 2: Apply the migration to the database:

3. What is a migration, and how do you run it?

A migration in Django is a way of propagating changes you make to your models (like adding, deleting, or

modifying fields) into the database schema. Migrations are stored in Python files within the migrations folder of

each Django app. To create and apply migrations:

makemigrations generates migration files based on changes made to models.

migrate applies the migrations to the database. Migrations help ensure that your database schema stays in

sync with your model definitions.

4. How do you define "one-to-one," "one-to-many," and "many-to-many" relationships?

In Django models, relationships between models are defined using specific fields:

One-to-One: Use OneToOneField to define a one-to-one relationship, where one object in a model is related

to exactly one object in another model.

One-to-Many: Use ForeignKey to define a one-to-many relationship, where one object in a model is related

to many objects in another model.

Many-to-Many: Use ManyToManyField to define a many-to-many relationship, where multiple objects in one

model are related to multiple objects in another model.

5. How do ForeignKey and ManyToManyField work in models?

ForeignKey is used to define a many-to-one relationship between two models. It means that each instance of

the model with the ForeignKey can be linked to one instance of another model. The on_delete parameter

specifies what happens when the referenced object is deleted (e.g., CASCADE will delete all related objects).

ManyToManyField is used to define a many-to-many relationship. This field creates an intermediary table in

the database that stores the relationship between two models.

python manage.py makemigrations

python manage.py migrate

class Profile(models.Model):

 user = models.OneToOneField(User, on_delete=models.CASCADE)

1

2

class Post(models.Model):

 author = models.ForeignKey(User, on_delete=models.CASCADE)

1

2

class Course(models.Model):

 students = models.ManyToManyField(Student)

1

2

class Post(models.Model):

 author = models.ForeignKey(User, on_delete=models.CASCADE)

1

2

class Student(models.Model):1

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 5/24

6. How do you define standard and custom model managers?

A manager in Django is a class that manages database query operations for model instances. The default

manager, objects , is automatically created for every model. You can also define custom managers by inheriting

from models.Manager and adding methods that return customized querysets:

Standard manager: The default manager for a model.

Custom manager: You can add methods to the custom manager to filter or return specific querysets.

7. What is a QuerySet in Django?

A QuerySet in Django represents a collection of database queries that retrieve data from the database.

QuerySets are lazy, meaning they don’t hit the database until they are evaluated (e.g., through iteration, slicing,

or converting to a list). You can filter, exclude, or modify QuerySets using methods like filter() , exclude() , and

get() . QuerySets allow you to retrieve, modify, and perform other operations on model instances in an efficient

and flexible manner.

8. How do filters (filter(), exclude(), get()) work in QuerySet?

filter() returns a new QuerySet with objects that match the given criteria:

exclude() returns a new QuerySet with objects that do not match the given criteria:

get() retrieves a single object based on the given parameters. If no match is found, it raises DoesNotExist ; if

multiple objects are found, it raises MultipleObjectsReturned :

9. How do you implement the save() and delete() methods in a model?

The save() method in Django is used to save an instance of a model to the database:

The delete() method is used to delete a model instance from the database:

class Post(models.Model):

 title = models.CharField(max_length=100)

 objects = models.Manager() # Default manager

1

2

3

class PostManager(models.Manager):

 def published(self):

 return self.filter(status='published')

class Post(models.Model):

 title = models.CharField(max_length=100)

 status = models.CharField(max_length=10)

 objects = PostManager() # Custom manager

1

2

3

4

5

6

7

8

posts = Post.objects.filter(author=user)

posts = Post.objects.exclude(status='draft')

post = Post.objects.get(id=1)

post = Post(title="New Post", author=user)

post.save()

1

2

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 6/24

Django Templates

10. How does cascade deletion work in Django?

Cascade deletion is implemented using the on_delete=models.CASCADE option in a ForeignKey field. When an

object referenced by a ForeignKey is deleted, all related objects are also deleted automatically. For example:

If a User object is deleted, all Post objects that reference that user will also be deleted automatically.

These answers should help explain key concepts related to Django models and working with data in the Django

ORM.

post = Post.objects.get(id=1)

post.delete()

1

2

class Post(models.Model):

 author = models.ForeignKey(User, on_delete=models.CASCADE)

1

2

1. What is a template in Django?

A template in Django is an HTML file that contains dynamic content and is used to render the final output that

will be displayed in the browser. It allows you to separate the presentation (HTML) from the logic of your

application. Templates can include variables, logic (like loops and conditions), and template tags and filters to

display dynamic data based on what is passed from the views.

2. How do you pass data from a view to a template?

In Django, data is passed from the view to the template through a context. The context is a dictionary that

contains keys and values, where the keys are the variable names that will be used in the template, and the values

are the data that you want to display. To pass the data to the template:

In the view, you use render() to send the context to the template:

3. How do tags and filters work in Django templates?

Tags are used to control the logic within templates, such as loops, conditions, and other template-related

actions. For example:

{% if %} : Used for conditional logic.

{% for %} : Used for loops to iterate over a list.

{% include %} : Includes another template in the current template.

from django.shortcuts import render

def my_view(request):

 context = {'variable_name': 'value'}

 return render(request, 'template_name.html', context)

1

2

3

4

5

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 7/24

Filters are used to modify the output of variables before displaying them in the template. Filters are applied

using the | symbol. For example:

{{ value|lower }} : Converts text to lowercase.

{{ value|length }} : Gets the length of a list or string.

4. What is context in templates?

In Django templates, context refers to the data passed from the view to the template. It is a dictionary where the

keys are variable names, and the values are the actual data or objects that the template can use. For example:

Within the template, you can access the context data as follows:

5. How does template inheritance work in Django?

Django templates support template inheritance, allowing you to create a base template and extend it in other

templates. This promotes reusability and keeps your code DRY (Don’t Repeat Yourself). The base template

contains common elements (like headers, footers, or navigation), and child templates override specific blocks.

Base template (base.html):

Child template (home.html):

{% for item in items %}

 <p>{{ item }}</p>

{% endfor %}

1

2

3

<p>{{ message|lower }}</p>

context = {'name': 'Alice', 'age': 30}

<p>Name: {{ name }}</p>

<p>Age: {{ age }}</p>

1

2

<!DOCTYPE html>

<html>

 <head>

 <title>{% block title %}My Website{% endblock %}</title>

 </head>

 <body>

 <header>

 <h1>My Website</h1>

 </header>

 <div class="content">

 {% block content %}{% endblock %}

 </div>

 </body>

</html>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

{% extends 'base.html' %}

{% block title %}Home{% endblock %}

{% block content %}

1

2

3

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 8/24

6. How do you use static files in templates?

Django provides a way to include static files (CSS, JavaScript, images) in your templates using the {% static %}

tag. This ensures that static files are served correctly in both development and production environments.

First, include {% load static %} at the beginning of your template.

Then, you can reference static files like this:

7. How do templates work for forms in Django?

Django provides a convenient way to generate and render HTML forms using templates. You can render form

fields manually or use Django's built-in form rendering methods.

Automatic rendering of forms:

form.as_p renders the form fields as <p> elements.

You can also manually render individual fields:

8. How do you handle template errors?

Django provides error handling mechanisms in templates:

Template syntax errors: Django will raise a TemplateSyntaxError , which includes the line number and a

message about the error.

Displaying custom error messages: You can display error messages in forms using Django’s {{ form.errors

}} :

9. How do you add dynamic content in templates?

 <p>Welcome to the homepage!</p>

{% endblock %}

4

5

<link rel="stylesheet" type="text/css" href="{% static 'css/style.css' %}">

1

2

<form method="post">

 {% csrf_token %}

 {{ form.as_p }}

 <button type="submit">Submit</button>

</form>

1

2

3

4

5

<label for="{{ form.name.id_for_label }}">Name:</label>

{{ form.name }}

1

2

{% if form.errors %}

 {% for field in form %}

 {% for error in field.errors %}

 {{ error }}

 {% endfor %}

 {% endfor %}

{% endif %}

1

2

3

4

5

6

7

8

9

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 9/24

Django templates allow you to add dynamic content using variables and template tags. You can display dynamic

content like data from the view, such as user details, date and time, or results from a database query.

Displaying variables:

Using template tags:

10. How do you implement custom tags and filters?

You can create custom template tags and filters by writing a Python file in a templatetags directory within your

app.

Custom filter: To create a custom filter:

Create a file called custom_filters.py in the templatetags folder of your app.

In your template:

Custom tag: To create a custom tag:

Create a file called custom_tags.py in the templatetags folder of your app.

In your template:

<p>Welcome, {{ user.username }}!</p>

{% if user.is_authenticated %}

 <p>Welcome back, {{ user.username }}!</p>

{% else %}

 <p>Please log in.</p>

{% endif %}

1

2

3

4

5

from django import template

register = template.Library()

@register.filter

def multiply(value, arg):

 return value * arg

1

2

3

4

5

6

7

{% load custom_filters %}

<p>{{ 5|multiply:10 }}</p> <!-- Output will be 50 -->

1

2

from django import template

register = template.Library()

@register.simple_tag

def current_time():

 from datetime import datetime

 return datetime.now()

1

2

3

4

5

6

7

8

{% load custom_tags %}1

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 10/24

Django Views

These answers should help clarify the usage of templates in Django, including key features like context,

inheritance, and custom tags/filters.

1. What is a view in Django?

A view in Django is a Python function or class that receives a web request and returns a web response. The

response can include HTML content, redirections, JSON data, or other content types. Views handle the business

logic, such as querying the database, processing forms, and returning the appropriate response to the user.

Example of a simple view:

2. What is the difference between function-based views (FBVs) and class-based views (CBVs)?

Function-based views (FBVs): These are simple Python functions that take a request object as an argument

and return a response. They are more straightforward and easier to understand for simple use cases.

Example:

Class-based views (CBVs): These are more structured and object-oriented, allowing you to create reusable

views by subclassing Django's generic view classes. They are better suited for more complex views with

reusable patterns like handling forms, lists, or CRUD operations.

Example:

3. How to implement a redirect in Django?

In Django, you can redirect users to a different URL using the redirect() function from django.shortcuts . This is

useful when you want to send users to another page after a form submission or other action.

Example of redirecting to another URL:

from django.http import HttpResponse

def my_view(request):

 return HttpResponse("Hello, World!")

1

2

3

4

def my_view(request):

 return HttpResponse("This is a function-based view.")

1

2

from django.views import View

class MyView(View):

 def get(self, request):

 return HttpResponse("This is a class-based view.")

1

2

3

4

5

from django.shortcuts import redirect

def my_view(request):

 return redirect('some_url_name')

1

2

3

4

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 11/24

You can also pass a URL as a string:

4. How do you handle HTTP requests (GET, POST) in views?

Django views can handle different HTTP methods, such as GET and POST , using simple conditional logic or

through class-based views.

Function-based views:

Class-based views: Use methods like get() and post() to handle respective HTTP methods.

5. What is JsonResponse and how do you use it?

JsonResponse is a subclass of Django's HttpResponse that allows you to return JSON-encoded data as a response.

It's commonly used when creating APIs or sending data to a frontend application.

Example of using JsonResponse :

6. How to handle 404 and 500 errors in Django?

Django provides a built-in way to handle common HTTP errors such as 404 (Page Not Found) and 500 (Server

Error).

return redirect('/new-url/')

from django.http import HttpResponse

def my_view(request):

 if request.method == 'POST':

 # Process POST request

 return HttpResponse("POST request received")

 else:

 # Process GET request

 return HttpResponse("GET request received")

1

2

3

4

5

6

7

8

9

from django.http import HttpResponse

from django.views import View

class MyView(View):

 def get(self, request):

 return HttpResponse("GET request received")

 def post(self, request):

 return HttpResponse("POST request received")

1

2

3

4

5

6

7

8

9

from django.http import JsonResponse

def my_view(request):

 data = {'message': 'Hello, World!'}

 return JsonResponse(data)

1

2

3

4

5

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 12/24

404 Error: To handle 404 errors (when a page is not found), you can create a custom template named

404.html . Django will use this template if a page is not found.

Example:

Create a 404.html file in your templates directory to display a custom 404 error page.

500 Error: Similarly, you can create a custom template named 500.html to handle server errors.

Example:

Create a 500.html file in your templates directory to display a custom 500 error page.

Additionally, you can raise a Http404 exception manually in your views:

7. How do you use mixins in class-based views?

Mixins are used in class-based views to add common functionality without needing to rewrite code. They allow

you to reuse pieces of logic across different views.

Example of a mixin:

8. How do the dispatch() and get_context_data() methods work in class-based views?

dispatch(): This method is called when a request is made to a class-based view. It determines which method

(such as get() , post() , etc.) should be called based on the HTTP method of the request. You can override

dispatch() to add custom logic before or after the request is processed.

Example:

from django.http import Http404

def my_view(request):

 if not some_condition:

 raise Http404("Page not found.")

 return HttpResponse("Page found.")

1

2

3

4

5

6

from django.http import HttpResponse

from django.views.generic import View

class MyMixin:

 def dispatch(self, request, *args, **kwargs):

 print("This will run for every request")

 return super().dispatch(request, *args, **kwargs)

class MyView(MyMixin, View):

 def get(self, request):

 return HttpResponse("Hello from MyView with mixin!")

1

2

3

4

5

6

7

8

9

10

11

def dispatch(self, request, *args, **kwargs):

 print("Dispatch method executed.")

 return super().dispatch(request, *args, **kwargs)

1

2

3

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 13/24

get_context_data(): This method is used to add extra context data to a template. It is commonly used in

views that render templates (such as ListView or DetailView). You can override it to pass additional context.

Example:

9. What is Middleware in Django, and how do you implement it?

Middleware is a way to process requests globally before they reach the view and after the view has processed

them. Middleware can be used for various tasks like authentication, logging, and security.

Example of implementing middleware:

Create a custom middleware class that implements __init__() and __call__() methods.

Add it to the MIDDLEWARE list in settings.py :

10. How to add custom Middleware?

To add custom middleware in Django, you can create a class that inherits from MiddlewareMixin (for Django

versions before 2.0) or implement the necessary methods in a class (for Django 2.0+).

For Django 2.0+:

class MyView(TemplateView):

 template_name = 'my_template.html'

 def get_context_data(self, **kwargs):

 context = super().get_context_data(**kwargs)

 context['my_variable'] = 'This is extra context'

 return context

1

2

3

4

5

6

7

from django.utils.deprecation import MiddlewareMixin

class CustomMiddleware(MiddlewareMixin):

 def process_request(self, request):

 print("Request is being processed.")

 def process_response(self, request, response):

 print("Response is being processed.")

 return response

1

2

3

4

5

6

7

8

9

MIDDLEWARE = [

 'myapp.middleware.CustomMiddleware',

 # other middleware entries

]

1

2

3

4

from django.utils.timezone import now

class TimezoneMiddleware:

 def __init__(self, get_response):

1

2

3

4

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 14/24

Start Learning Coding today

and boost your Career

Potential

Start today!

Forms and Validation in Django

Add the middleware to the MIDDLEWARE setting in settings.py :

These answers cover key aspects of handling views, HTTP requests, and middleware in Django, which will be

useful for building robust applications.

 self.get_response = get_response

 def __call__(self, request):

 # Add custom processing here

 request.timezone = now()

 response = self.get_response(request)

 return response

5

6

7

8

9

10

11

MIDDLEWARE = [

 'myapp.middleware.TimezoneMiddleware',

 # other middleware entries

]

1

2

3

4

1. How do you create a form in Django?

In Django, forms are created by defining a form class that inherits from django.forms.Form . This class defines the

fields and their types, such as CharField , IntegerField , DateField , etc.

Example of creating a basic form:

from django import forms

class ContactForm(forms.Form):

1

2

3

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 15/24

Once the form is created, you can use it in a view to render the form in a template and handle user input.

2. How is form data validation handled?

Django provides built-in validation for form fields, such as ensuring the correct data type (e.g., email format or

minimum length). Validation is automatically applied when you call form.is_valid() .

Example of validation:

You can also define custom validation for individual fields using the clean_<field_name>() method, which allows

you to write additional checks (e.g., checking if the email already exists in the database).

3. What are ModelForms in Django?

A ModelForm is a special form class that is linked directly to a Django model. It automatically generates form

fields based on the model's fields, simplifying the creation of forms that correspond to model data. ModelForms

are useful when you want to create, update, or delete model instances via forms.

Example of using a ModelForm :

Once you create a ModelForm , you can use it to create or update model instances:

4. How do you implement custom validation in forms?

Custom validation can be implemented by overriding the clean() method or by defining specific

clean_<field_name>() methods for individual fields. The clean() method is useful when you need to perform

validation that involves multiple fields, while clean_<field_name>() is used for field-specific validation.

 name = forms.CharField(max_length=100)

 email = forms.EmailField()

message = forms CharField(widget=forms Textarea)

4

5

6

form = ContactForm(request.POST)

if form.is_valid():

 # Process the form data

 name = form.cleaned_data['name']

 email = form.cleaned_data['email']

 message = form.cleaned_data['message']

else:

 # Form is not valid

 errors = form.errors

1

2

3

4

5

6

7

8

9

from django import forms

from .models import Contact

class ContactForm(forms.ModelForm):

 class Meta:

 model = Contact

 fields = ['name', 'email', 'message']

1

2

3

4

5

6

7

form = ContactForm(request.POST)

if form.is_valid():

 form.save() # This will create a new Contact instance

1

2

3

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 16/24

Example of field-specific validation:

Example of overriding clean() for custom form-wide validation:

5. How do you handle file uploads in forms?

To handle file uploads in Django, you need to use FileField or ImageField in your form and ensure that your

view is set up to handle file uploads. Additionally, you need to include enctype="multipart/form-data" in your

HTML form tag.

Example of a form with a file field:

Example of handling file upload in a view:

class ContactForm(forms.Form):

 email = forms.EmailField()

 def clean_email(self):

 email = self.cleaned_data.get('email')

 if email.endswith('@example.com'):

 raise forms.ValidationError("We do not accept @example.com emails.")

 return email

1

2

3

4

5

6

7

8

class ContactForm(forms.Form):

 name = forms.CharField()

 email = forms.EmailField()

 def clean(self):

 cleaned_data = super().clean()

 name = cleaned_data.get('name')

 email = cleaned_data.get('email')

 if not name or not email:

 raise forms.ValidationError("Both name and email are required.")

 return cleaned_data

1

2

3

4

5

6

7

8

9

10

11

12

class FileUploadForm(forms.Form):

 title = forms.CharField(max_length=100)

 file = forms.FileField()

1

2

3

from django.shortcuts import render

from .forms import FileUploadForm

def file_upload_view(request):

 if request.method == 'POST':

 form = FileUploadForm(request.POST, request.FILES)

 if form.is_valid():

 # Process the uploaded file

1

2

3

4

5

6

7

8

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 17/24

Security and Authentication in Django

In the HTML template, make sure to include enctype="multipart/form-data" :

By following these steps, you can handle file uploads seamlessly in Django forms.

 uploaded_file = form.cleaned_data['file']

 with open('some_file.txt', 'wb') as f:

 for chunk in uploaded_file.chunks():

 f.write(chunk)

 return HttpResponse("File uploaded successfully!")

 else:

 form = FileUploadForm()

return render(request 'upload html' {'form': form})

9

10

11

12

13

14

15

16

<form method="POST" enctype="multipart/form-data">

 {% csrf_token %}

 {{ form.as_p }}

 <button type="submit">Upload</button>

</form>

1

2

3

4

5

1. How does Django’s authentication system work?

Django’s authentication system is designed to handle user login, logout, password management, and user

permissions. It provides a set of built-in views, forms, and models to manage authentication. The core of Django's

authentication system is the User model, which includes fields like username , password , email , and

is_authenticated . It also includes functions like login() , logout() , and authenticate() .

To authenticate a user, Django checks the provided credentials (username and password) and verifies them

against the User model in the database.

The login() method creates a session, allowing users to stay logged in, and the logout() method destroys

the session.

Django's authentication system also includes decorators and mixins for restricting access to views based on user

authentication and permissions.

2. How to implement a user registration system?

To implement a user registration system, you can use Django's UserCreationForm or create a custom registration

form. Here's an example using the built-in form:

views.py:

from django.shortcuts import render, redirect

from django.contrib.auth.forms import UserCreationForm

def register(request):

 if request.method == 'POST':

 form = UserCreationForm(request.POST)

 if form.is_valid():

1

2

3

4

5

6

7

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 18/24

register.html:

This allows users to create an account with a username , password , and password confirmation . After a successful

registration, users can log in with their credentials.

3. What is CSRF, and how do you prevent it in Django?

CSRF (Cross-Site Request Forgery) is an attack where a malicious actor tricks a user into performing an

unwanted action on a website where they are authenticated, such as submitting a form.

Django provides built-in protection against CSRF attacks by requiring a special token (CSRF token) to be included

in any POST, PUT, DELETE, or PATCH requests. This token is added automatically to forms using the {% csrf_token

%} template tag.

To prevent CSRF attacks:

Always include {% csrf_token %} inside any <form> tag that modifies data (e.g., POST requests).

In views handling POST requests, Django verifies that the CSRF token matches the session.

Example:

Django will check if the token is present and correct in the request before processing it. If not, it will block the

request and raise a 403 Forbidden error.

4. How to implement role-based authorization in Django?

In Django, you can implement role-based authorization by using permissions and groups. A Group is a collection

of permissions, and you can assign users to different groups based on their role (e.g., Admin, Editor, Viewer). You

can also assign individual permissions directly to users.

Create Groups and Permissions: Django provides a model called Group where you can assign multiple

 form.save()

 return redirect('login') # Redirect to the login page after successful regis

 else:

 form = UserCreationForm()

 return render(request, 'register.html', {'form': form})

8

9

10

11

12

<form method="POST">

 {% csrf_token %}

 {{ form.as_p }}

 <button type="submit">Register</button>

</form>

1

2

3

4

5

<form method="POST">

 {% csrf_token %}

 <input type="text" name="username">

 <button type="submit">Submit</button>

</form>

1

2

3

4

5

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 19/24

permissions. You can create a group in the Django admin panel or programmatically.

Assign Permissions to Users: You can assign users to groups, and groups will have certain permissions that

allow or restrict access to different views. You can also use Django’s built-in

user.has_perm('permission_name') method to check if a user has a specific permission.

Example of using decorators for role-based authorization:

In this example, the dashboard view requires the user to be logged in and have the view_dashboard permission.

You can create and assign permissions in Django's admin interface.

5. How to protect a Django application from SQL injections?

SQL injection is an attack where a user can inject malicious SQL code into queries. Django ORM (Object-

Relational Mapping) helps protect your application from SQL injection by automatically escaping parameters and

creating safe SQL queries.

Django ORM: When using Django’s QuerySet API (e.g., filter() , exclude() , get()), the ORM automatically

escapes user inputs, so there is no risk of SQL injection.

Example of safe query:

Django automatically handles the SQL query safely, even if the input ('john_doe') contains special characters.

Avoid Raw SQL Queries: If you need to execute raw SQL, use Django’s connection.cursor() method and

ensure that user input is parameterized, so it doesn’t get executed directly in SQL.

Example of using params for safe raw SQL queries:

By using Django's ORM and ensuring all user input is handled properly, you can effectively protect your

application from SQL injection attacks.

from django.contrib.auth.decorators import login_required, permission_required

@login_required

@permission_required('app.view_dashboard', raise_exception=True)

def dashboard(request):

 return render(request, 'dashboard.html')

1

2

3

4

5

6

user = User.objects.get(username='john_doe')

from django.db import connection

def safe_query(username):

 with connection.cursor() as cursor:

 cursor.execute("SELECT * FROM auth_user WHERE username = %s", [username])

 result = cursor.fetchall()

 return result

1

2

3

4

5

6

7

4/18/25, 5:20 PM Top 50 Technical Interview Questions for Django Developers

https://codefinity.com/blog/Top-50-Technical-Interview-Questions-for-Django-Developers 20/24

