
MERN Stack Interview Questions
Last Updated : 01 Aug, 2024

MERN Stack is one of the most well-known stacks used in web

development. Each of these technologies is essential to the development

of web applications, and together they form an end-to-end framework that

developers can work within. MERN Stack comprises 4 technologies

namely: MongoDB, Express, React, and Node.js.

It is designed to make the development process smoother and easier.

Many job roles demand individuals to be fluent in MERN Stack. It is used

by top IT companies such as Facebook, Instagram, WhatsApp, Dropbox,

and Netflix. So, to get into these companies, you need to complete

these Top MERN interview questions which can make you seem like an

expert in front of the interviewer.

In this Top MERN Interview Questions article we'll discuss Frequently

asked interview questions of MERN that you should prepare for the

interviews. These questions will be helpful in clearing the interviews

specially for the full stack development role.

MERN Stack Interview Questions and Answers

Full Stack Course HTML CSS JavaScript TypeScript jQuery AngularJS ReactJS Next.js

https://www.geeksforgeeks.org/courses/full-stack-node?utm_campaign=241_web_tech_html_css&utm_medium=gfgcontent_shm&utm_source=geeksforgeeks&ref=shm
https://www.geeksforgeeks.org/html-tutorial/?ref=shm
https://www.geeksforgeeks.org/css-tutorial/?ref=shm
https://www.geeksforgeeks.org/javascript/?ref=shm
https://www.geeksforgeeks.org/typescript/?ref=shm
https://www.geeksforgeeks.org/jquery-tutorial/?ref=shm
https://www.geeksforgeeks.org/angularjs/?ref=shm
https://www.geeksforgeeks.org/react-tutorial/?ref=shm
https://www.geeksforgeeks.org/nextjs/?ref=shm
https://www.geeksforgeeks.org/

1. Who is a Mern Stack Developer?

A MERN Stack Developer is a skilled programmer who specializes in

building web applications using four key technologies: MongoDB, Express,

React, and Node.js. These technologies work together to create both the

front-end (what the user sees and interacts with) and back-end (the server-

side logic that powers the application) of a website.

2. List the abbreviation of MERN

MERN in abbreviated form is:

ExpressJS

MongoDB

ReactJS

NodeJS

3. What is ReactJS?

ReactJS is a popular JavaScript library for creating user interfaces (UIs) of

web applications. It helps developers build reusable components, which

are like building blocks for creating complex UIs. ReactJS is known for its

efficiency and uses a virtual DOM (Document Object Model) to render

components quickly. It operates on the client side, meaning it runs in the

web browser, and uses JSX, an extension of JavaScript, to define UI

components.

4. Explain the MVC architecture?

The Model-View-Controller (MVC) framework is a way of organizing code

for web applications. It separates the application into three parts: the

Model, the View, and the Controller. Each part has a specific job to do. The

Model is responsible for storing and managing data. It represents the data

in a way that is easy for the application to understand.

https://www.geeksforgeeks.org/mern-stack
https://www.geeksforgeeks.org/mern-full-form
https://www.geeksforgeeks.org/reactjs-introduction
https://www.geeksforgeeks.org/mvc-framework-introduction

5. Explain the building blocks of React?

The five main building blocks of React are:

Components: These are reusable blocks of code that return HTML.

JSX: It stands for JavaScript and XML and allows to write HTML in

React.

Props and State: props are like function parameters and State is similar

to variables.

Context: This allows data to be passed through components as props in

a hierarchy.

Virtual DOM: It is a lightweight copy of actual DOM which makes DOM

manipulation easier.

6. What Is Replication In MongoDB?

Replication in MongoDB involves creating multiple copies of data across

different servers, known as replica sets. This process enhances read

capacity by allowing clients to distribute read operations across these

replica sets. Storing data copies across various data centers improves

data localization and availability for distributed applications. Additionally,

maintaining surplus copies serves specific purposes such as backup,

reporting, and disaster recovery.

7. What in React are Higher-Order Components (HOC)?

A higher-order component (HOC) is a function that takes a component as

input and generates another component. Essentially, it stems from the

compositional structure of React. These components are termed "pure"

because they can adopt any dynamically provided child component

without replicating or altering the behavior of the input components.

HOC may be utilised in the following usage cases:

Reuse of code, reasoning, and bootstrap abstraction

https://www.geeksforgeeks.org/mongodb-replication-and-sharding
https://www.geeksforgeeks.org/react-js-higher-order-components

Represent Highjacking

State manipulation and abstraction

Props manipulation

8. What is Reconciliation in React JS?

React assesses the necessity for a real DOM update when there's a change

in a component's props or state. This evaluation involves comparing the

newly returned element with the one previously displayed. If they are not

equal, React proceeds to update the DOM. This process is referred to as

reconciliation.

9. What is Sharding in MongoDB?

Sharding is a method for distributing data across multiple machines to

facilitate data sharing. MongoDB utilizes sharding to support installations

with extensive data sets and demanding performance requirements. This

enables MongoDB to achieve horizontal scalability. At the collection level,

MongoDB distributes data across the shards in the cluster.

10. What distinguishes a class component from a functional

component?

Class Components Functional Components

ES6 class syntax is used in class-

based components. It may employ

lifecycle methodologies.

Comparing functional components

to class-based functions, they are

easier.

Components of a class extend React

components.

Functional Components primarily

concentrate on the application’s user

interface (UI), not on its behaviour.

https://www.geeksforgeeks.org/reactjs-reconciliation
https://www.geeksforgeeks.org/what-is-sharding
https://www.geeksforgeeks.org/reactjs-class-components
https://www.geeksforgeeks.org/reactjs-functional-components
https://www.geeksforgeeks.org/reactjs-functional-components

Class Components Functional Components

To access the properties and

methods that you specify inside the

class components in this section,

you must use the keyword.

These are really render functions in

the class component, to be more

accurate.

11. What is the purpose of MongoDB?

MongoDB serves as a document-oriented database manager specifically

crafted for the storage of substantial data volumes. It stores data in a

binary JSON format and incorporates the concepts of collections and

documents. Being a cross-platform, NoSQL database, MongoDB is

distinguished by its high performance, scalability, and flexibility, enabling

smooth querying and indexing operations.

12. What is the purpose of ExpressJS?

ExpressJS is a web application framework meticulously crafted to

facilitate the development and hosting of Node.js projects. Under the MIT

license, it stands as an open-source framework. ExpressJS adeptly

orchestrates the interaction between the front-end and the database,

ensuring a secure and seamless data transfer.

13. What are the data types in MongoDB?

MongoDB accommodates an extensive array of data types as values

within its documents. In MongoDB, documents bear a resemblance to

JavaScript objects, and they adhere to the key/value-pair structure inherent

in JSON. Beyond the fundamental key/value concept of JSON, MongoDB

introduces support for various additional data types. The prevalent data

types in MongoDB include:

https://www.geeksforgeeks.org/what-is-mongodb-working-and-features
https://www.geeksforgeeks.org/datatypes-in-mongodb

Null

Boolean

Number

String

Date

Regular expression

Array

Embedded document

Object ID

Binary Data

14. What is REPL In Node JS?

REPL, short for "Read Eval Print Loop," is a straightforward program

designed to receive commands, assess them, and display the outcomes.

Its purpose is to establish an environment akin to a Unix/Linux shell or a

Windows console, allowing users to input commands and queries while

receiving corresponding outputs. The functions performed by REPL

include:

READ – This reads the input provided by the user, parses it into

JavaScript data structure, and stores it in the memory.

EVAL – This executes the data structure.

PRINT – This prints the outcome generated after evaluating the

command.

LOOP – This loops the above command until the user presses Ctrl+C

twice.

15. What is meant by “Callback” in Node JS?

A callback serves as the asynchronous counterpart to a function. Node.js

extensively utilizes callbacks, invoking them upon the conclusion or

completion of a specific task. For example, consider a function tailored for

file reading; it initiates the file reading process and promptly relinquishes

https://www.geeksforgeeks.org/node-js-repl-read-eval-print-loop
https://www.geeksforgeeks.org/node-js-callback-concept

control to the execution environment, enabling the execution of

subsequent instructions.

16. What are pure components in MERN Stack?

In the MERN stack, pure components can be viewed as standard

components, differing primarily in their engagement with the

shouldComponentUpdate method. Pure components are primarily tasked

with conducting a comparison of props and state whenever there is a

change in either props or state.

17. How does Node JS handle Child Threads?

Node.js, in its most basic state, operates as a single-threaded process.

Developers lack access to child threads or thread management

techniques. Although certain operations, like asynchronous I/O, prompt the

creation of child threads, these activities occur in the background without

disrupting the main event loop or executing any JavaScript code for the

application.

18. What are some features of MongoDB?

Indexing: It offers support for generic secondary indexes and delivers

distinctive capabilities for unique, compound, geospatial, and full-text

indexing.

Aggregation: It furnishes an aggregation framework founded on the

concept of data processing pipelines.

Special collection and index types: It includes support for time-to-live

(TTL) collections, allowing data that should expire at a specific time to

be managed effectively.

File storage: It offers a user-friendly protocol for storing extensive files

and their corresponding metadata.

https://www.geeksforgeeks.org/how-to-handle-child-threads-in-node-js

Sharding: Sharding involves the segmentation of data across multiple

machines.

19. What is prop drilling?

When developing a React application, a deeply nested component often

needs to consume data provided by another component much higher in

the hierarchy. The simplest approach is to pass a prop from one

component to the next, traversing the hierarchy from the source

component to the deeply nested one. This process is referred to as prop

drilling.

20. How do you manage packages in your node.js project?

The management of dependencies can be handled by various package

installers along with their corresponding configuration files. Among them,

npm and yarn are commonly utilized. Both these tools offer

comprehensive JavaScript libraries, incorporating advanced features for

controlling environment-specific configurations. To ensure consistency in

library versions across a project, package.json and package-lock.json are

employed. This practice helps avoid compatibility issues when

transitioning the application to different environments.

21. What is JSX in React JS?

A syntactic extension to JavaScript, provides access to the full capability

of JavaScript. React components are constructed using JSX, where any

JavaScript expression can be incorporated by enclosing it in curly braces.

After compilation, JSX expressions are transformed into standard

JavaScript objects. Consequently, JSX can be assigned to variables, used

as arguments, returned from functions, and employed within if statements

and for loops.

https://www.geeksforgeeks.org/what-is-prop-drilling-and-how-to-avoid-it
https://www.geeksforgeeks.org/reactjs-jsx-introduction

22: How to handle routing in Express JS?

Express.js manages routing through the use of the `express.Router()`

method. This method yields an instance of a router, enabling the definition

of routes for the application. Below is an illustration of how to define a

basic route using this router:

23. What is the virtual DOM in React?

The virtual DOM serves as a JavaScript representation of the real DOM

(Document Object Model) employed by React to enhance rendering

performance. When a modification occurs in the virtual DOM, React

conducts a comparison between the new and old virtual DOMs.

Subsequently, only the altered parts are updated, contributing to a faster

and more efficient rendering process.

const express = require('express')
const router = express.Router()

router.get('/', (req, res) => {
 res.send('Hello, World!')
})

module.exports = router

//A simple example of updating the virtual DOM in React:

import React, { useState } from 'react';

function Counter() {
 const [count, setCount] = useState(0);

 function handleClick() {
 setCount(count + 1);
 }

 return (
 <div>
 <p>You clicked {count} times.</p>
 <button onClick={handleClick}>Click me!</button>
 </div>
);
}

https://www.geeksforgeeks.org/express-js-express-router-function
https://www.geeksforgeeks.org/reactjs-virtual-dom

24: What is middleware in Node.js and how is it used?

In Node.js, middleware is a function that takes in the request and response

objects, as well as the next middleware function in the application's

request-response cycle. It can be employed to alter the request or

response objects, as well as to execute various tasks such as logging,

authentication, and error handling.

25. What is RESTful API?

A RESTful API is an architectural style for constructing web APIs. It utilizes

HTTP methods like GET, POST, PUT, and DELETE to execute CRUD (create,

read, update, delete) operations on resources, identifying these resources

through URLs. A key characteristic of a RESTful API is its statelessness,

signifying that each request carries all the essential information for its

completion.

26. Explain the event loop in Node JS.

The event loop in JavaScript facilitates asynchronous programming. In JS,

all operations occur on a single thread, yet by employing clever data

structures, we can simulate the effect of multithreading. The Event Loop

manages asynchronous tasks by queuing and listening to events.

27. What are node JS streams?

//Here's an example of a middleware function that logs the request
method and URL:

function logMiddleware(req, res, next) {
 console.log(`[${req.method}] ${req.url}`);
 next();
}

app.use(logMiddleware);

https://www.geeksforgeeks.org/what-is-rest-api-in-node-js
https://www.geeksforgeeks.org/node-js-event-loop
https://www.geeksforgeeks.org/node-js-streams

Streams in Node.js are instances of EventEmitter designed for handling

streaming data. They prove particularly useful in managing and

manipulating large files, such as videos or mp3s, over the network.

Streams employ buffers as temporary storage. There are primarily four

main types of streams:

Writable: Streams to which data can be written, exemplified by

`fs.createWriteStream()`.

Readable: Streams from which data can be read, as illustrated by

`fs.createReadStream()`.

Duplex: Streams that are both Readable and Writable, exemplified by

`net.Socket`.

Transform: Duplex streams, capable of modifying or transforming data

as it is both written and read, such as `zlib.createDeflate()`.

28. What are Node JS buffers?

Buffers, in a general sense, are temporary memory utilized by streams to

retain data until it is consumed. Unlike JavaScript's Uint8Array, buffers

introduce additional use cases and are primarily employed to represent a

fixed-length sequence of bytes. Buffers support legacy encodings such as

ASCII, utf-8, etc. They are allocated as fixed (non-resizable) memory

outside the V8 engine.

29. Why use Express.js over Node.js?

In backend development, Node.js is commonly paired with Express.js for

improved ease and scalability. While Vanilla JavaScript suffices for front-

end coding, larger web apps benefit from React or Angular. A full app with

just Node.js can lead to complex code, so combining Node.js with

Express.js leverages speed and simplicity, creating scalable web APIs. This

synergy is seen in popular stacks like MEAN and MERN.

30. What is MongoDB?

https://www.geeksforgeeks.org/what-is-buffer-in-node-js
https://www.geeksforgeeks.org/what-is-mongodb-working-and-features

MongoDB is an open-source NoSQL database written in C++ language.

It uses JSON-like documents with optional schemas.

It provides easy scalability and is a cross-platform, document-oriented

database.

MongoDB works on the concept of Collection and Document.

It combines the ability to scale out with features such as secondary

indexes, range queries, sorting, aggregations, and geospatial indexes.

MongoDB is developed by MongoDB Inc. and licensed under the Server

Side Public License (SSPL).

31. What is a Collection in MongoDB?

In MongoDB, a collection is a set of documents. If a document is akin to a

row in a relational database, then a collection can be likened to a table.

Documents within a collection can possess varying "shapes," meaning

collections have dynamic schemas.

32. Explain the term “Indexing” in MongoDB.

In MongoDB, indexes play a crucial role in optimizing query resolution.

Essentially, an index stores a compact portion of the dataset in a format

conducive to efficient traversal. It retains the values of a specific field or

set of fields, organized based on the specified field values within the

index.

33. What are forms in React?

React employs forms to enable users to interact with web applications.

Using forms, users can interact with the application and enter the

required information whenever needed. The form contains certain

elements, such as text fields, buttons, checkboxes, radio buttons, etc

Forms are used for many different tasks such as user authentication,

searching, filtering, indexing, etc

https://www.geeksforgeeks.org/indexing-in-mongodb
https://www.geeksforgeeks.org/reactjs-forms

34. Explain the lifecycle methods of components.

getInitialState(): This is executed before the creation of the component.

componentDidMount(): This is executed when the component gets

rendered and placed on the DOM.

shouldComponentUpdate(): This is invoked when a component

determines changes to the DOM and returns a “true” or “false” value

based on certain conditions.

componentDidUpdate(): Is invoked immediately after rendering takes

place.

componentWillUnmount(): Is invoked immediately before a component

is destroyed and unmounted permanently.

35. What is Redux?

Redux is an open-source, JavaScript library used to manage the

application state. React uses Redux to build the user interface. It is a

predictable state container for JavaScript applications and is used for the

entire application’s state management.

36. What are the components of Redux?

Store: Holds the state of the application.

Action: The source information for the store.

Reducer: Specifies how the application's state changes in response to

actions sent to the store.

37. What is React Router?

React Router is a routing library built on top of React, which is used to

create routes in a React application. This is one of the most frequently

asked to react interview questions.

38. Why do we need to React Router?

https://www.geeksforgeeks.org/reactjs-lifecycle-components
https://www.geeksforgeeks.org/introduction-to-react-redux
https://www.geeksforgeeks.org/reactjs-router

It maintains consistent structure and behavior and is used to develop

single-page web applications.

Enables multiple views in a single application by defining multiple

routes in the React application.

39: What is the difference between ShadowDOM and VirtualDOM?

ShadowDOM is a web standard that provides a way to encapsulate HTML

and CSS code, making it isolated from the rest of the page. It allows

developers to create custom HTML elements with their own styles and

behavior.

On the other hand, VirtualDOM is a lightweight representation of the actual

DOM in memory. It is used in React to optimize rendering performance by

reducing the number of DOM manipulations.

40: Is Node.js entirely single-threaded?

No, Node.js is not entirely single-threaded. It uses an event-driven, non-

blocking I/O model that allows multiple operations to be processed

simultaneously. However, the execution of JavaScript code is single-

threaded.

41. What do you mean by Temporal Dead Zone in ES6?

Before the introduction of ES6, variable declarations were limited to the

use of var. ES6 brought two new ways to declare variables: let and const.

Both let and const declarations are confined to block scope, meaning they

can only be accessed within the curly braces {} that surround them.

In contrast, var does not have such limitations. Unlike var, which can be

accessed before its declaration, attempting to access let or const variables

before they are initialized with a value will result in an error. This restriction

is known as the Temporal Dead Zone, which is the period from the

beginning of the execution of a block where let or const variables are

https://www.geeksforgeeks.org/what-is-the-difference-between-shadowdom-and-virtualdom
https://www.geeksforgeeks.org/is-node-js-entirely-based-on-a-single-thread
https://www.geeksforgeeks.org/what-is-the-temporal-dead-zone-in-es6

declared until they are initialized. If there is an attempt to access these

variables during this zone, JavaScript will throw a reference error.

Example: Below both `let` and `const` variables are within the Temporal

Dead Zone (TDZ) from the commencement of their enclosing scope to the

point at which they are officially declared.

console.log(varNumber); // undefined
console.log(letNumber); // Throws the reference error
letNumber is not defined
var varNumber = 9;
let letNumber = 1;

42. How to Connect Node.js to a MongoDB Database?

MongoDB is a NoSQL database used to store large amounts of data

without any traditional relational database table. Instead of rows &

columns, MongoDB used collections & documents to store data. A

collections consist of a set of documents & a document consists of key-

value pairs which are the basic unit of data in MongoDB.

Let's see how we can connect nodejs with MongoDB:

const express = require("express");
const ejs = require("ejs");
const mongoose = require("mongoose");
const bodyParser = require("body-parser");

mongoose.connect("mongodb://localhost:27017/newCollection", {
useNewUrlParser: true,
useUnifiedTopology: true
});

const contactSchema = {
email: String,
query: String,
};

const Contact = mongoose.model("Contact", contactSchema);

const app = express();

app.set("view engine", "ejs");

https://www.geeksforgeeks.org/how-to-connect-node-js-to-a-mongodb-database

43. How to connect Node.js with React.js?

Connecting Node JS and React JS is an important part of developing full-

stack web application, where React is used for frontend and Node for

backend

Example: This example shows basic program for backend server.

app.use(bodyParser.urlencoded({
 extended: true
}));

app.use(express.static(__dirname + '/public'));

app.get("/contact", function(req, res){
 res.render("contact");
});

app.post("/contact", function (req, res) {
 console.log(req.body.email);
const contact = new Contact({
 email: req.body.email,
 query: req.body.query,
});
contact.save(function (err) {
 if (err) {
 throw err;
 } else {
 res.render("contact");
 }
});
});

app.listen(3000, function(){
 console.log("App is running on Port 3000");
});

const express = require("express");
const app = express();

app.post("/post", (req, res) => {
console.log("Connected to React");
res.redirect("/");
});

const PORT = process.env.PORT || 8080;

app.listen(PORT, console.log(`Server started on port ${PORT}`));

https://www.geeksforgeeks.org/how-to-connect-node-js-with-react-js

Example: This example shows basic program for frontend.

Output:

44. Can you elaborate on the MongoDB Aggregation Pipeline?

The MongoDB Aggregation Pipeline serves as a framework for data

processing and transformation within MongoDB. It involves a series of

sequential stages, facilitating operations like filtering, projection, grouping,

and sorting on documents. Each stage in the pipeline processes the data

// Filename - App.js

import logo from "./logo.svg";
import "./App.css";

function App() {
 return (
 <div className="App">
 <header className="App-header">
 <img
 src={logo}
 className="App-logo"
 alt="logo"/>

 <p>A simple React app.....</p>

 <a className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer">
 Learn React

 <form action="../../post"
 method="post"
 className="form">
 <button type="submit">
 Connected?
 </button>
 </form>
 </header>
 </div>
);
}

export default App;

https://www.geeksforgeeks.org/aggregation-in-mongodb

and forwards the results to the subsequent stage, culminating in the

generation of the final output.

45. How can you use the like operator to query MongoDB?

In MongoDB, you can implement a functionality similar to the "like"

operator by employing regular expressions with the `$regex` operator in the

`$match` pipeline stage of an aggregation query. For instance, the

subsequent query identifies documents in which the "name" field

commences with "Nick":

db.myCollection.aggregate([
 { $match: { name: { $regex: /^Nick/ } } }
])

46. Name a few techniques to optimize React app performance.

Some techniques to optimize React app performance include:

Memorization: Enhance performance by memoizing functions and

components, preventing unnecessary re-renders.

Virtualization: Leverage libraries such as `react-virtualized` for optimized

rendering of extensive lists or grids.

Code Splitting: Divide your code into smaller segments and load them

selectively based on necessity.

Lazy Loading: Employ React's `lazy()` and `Suspense` to load

components lazily.

Optimize Renders: Use shouldComponentUpdate, PureComponent, or

React.memo to prevent unnecessary renders.

Minimize Re-renders: Utilize `shouldComponentUpdate`,

`PureComponent`, or `React.memo` to minimize unnecessary renders.

Avoid Unnecessary State Updates: Exercise caution with `setState` to

minimize unnecessary re-renders.

Server-Side Rendering (SSR): Optimize initial load times by rendering

components on the server side.

47. What is the purpose of the module.exports?

In Node.js, a module consolidates cohesive code into a singular unit that

can be parsed by consolidating relevant functions within a single file.

Exporting a module involves defining and exporting functions, allowing

them to be imported into other files using the required keyword.

48. Can you explain CORS?

CORS, which stands for Cross-Origin Resource Sharing, is a mechanism

based on HTTP headers. It facilitates the ability of a web application

hosted at one origin (domain) to request access to resources from a server

located at a different origin. In essence, CORS is a browser-based system

that permits controlled access for scripts running on a client's browser to

interact with and retrieve resources from origins or domains beyond their

own.

49. What is DOM diffing?

When elements are rendered twice, the Virtual DOM initiates a comparison

process to identify the components that have undergone changes. It

identifies and focuses on the altered components on the page, excluding

those that remain unchanged. This approach minimizes DOM

modifications resulting from user interactions and enhances browser

performance by optimizing DOM manipulation. The primary objective is to

execute functions swiftly and efficiently.

50. What are the benefits of using JSX in React?

JSX offers several benefits:

https://www.geeksforgeeks.org/what-is-the-purpose-of-module-exports-in-node-js
https://www.geeksforgeeks.org/cross-origin-resource-sharing-cors
https://www.geeksforgeeks.org/explain-dom-diffing
https://www.geeksforgeeks.org/what-are-the-advantages-of-using-jsx-in-reactjs

Similar Reads

MERN Stack vs Java Full Stack

A website is a collection of various web pages made by the most popular
technologies, like HTML, CSS, and JavaScript, along with other front-end an…

6 min read

Difference between MEAN Stack and MERN Stack

Web development is a procedure or process for developing a website. A
website basically contains three ends: the client side, the server side, and th…

3 min read

It ensures speed by optimizing the compilation process into vanilla

JavaScript.

JSX is inherently type-safe, promoting well-structured code and

enabling early error detection during compilation.

It consistently simplifies and accelerates template writing, especially for

those familiar with HTML syntax.

Ready to go from coding beginner to development pro? Our DSA to

Development Coding Guide has everything you need to crush coding

interviews and ace real-world projects! Limited spots available!

Enroll Now and Transform Your Coding Skills! Also get 90% fee refund

on completing 90% of the course in 90 days! Take the Three 90

Challenge today.

Comment More info

Placement Training Program

Next Article

Top 60+ PHP Interview Questions

and Answers -2025

https://www.geeksforgeeks.org/mern-stack-vs-java-full-stack?ref=asr1
https://www.geeksforgeeks.org/difference-between-mean-stack-and-mern-stack?ref=asr2
https://www.geeksforgeeks.org/mern-stack?ref=asr3
https://gfgcdn.com/tu/Q8V/
https://gfgcdn.com/tu/Q8V/
https://gfgcdn.com/tu/Q8V/
https://www.geeksforgeeks.org/campus-training-program/?ref=articles
https://www.geeksforgeeks.org/php-interview-questions-and-answers/?ref=next_article
https://www.geeksforgeeks.org/php-interview-questions-and-answers/?ref=next_article
https://www.geeksforgeeks.org/php-interview-questions-and-answers/?ref=next_article

