
Devinterview-io / mongodb-interview-questions Public

🟣 MongoDB interview questions and answers to help you prepare for your next technical interview in 2024.

devinterview.io/

82 stars 27 forks Branches Tags Activity

1 Branch 0 Tags Go to file Go to file Code

Devinterview-io 01.01.24 feeb99b · last year

README.md 01.01.24 last year

MongoDB is a robust, document-oriented NoSQL database designed for high performance, scalability, and

developer agility.

Employs JSON-like documents (BSON format), facilitating complex data representation, deep nesting,

and array structures.

Provides dynamic schema support, allowing on-the-fly data definition and data types.

Permits multi-document transactions within a replica set (group of nodes). Sharding extends this to

support large distributed systems.

Offers extensive indexing capabilities, such as single and multi-field support, text, geospatial, and TTL

(Time to Live) Indexes for data expiration.

Gives developers the tools needed to design and optimize query performance.

 Star Notifications

Code Issues 1 Pull requests Actions Projects Security Insights

…

100 Core MongoDB Interview Questions

You can also find all 100 answers here 👉 Devinterview.io - MongoDB

1. What is MongoDB and what are its main features?

Key Features

Flexible Data Model

Indexed Queries

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 1/16

https://github.com/Devinterview-io
https://github.com/Devinterview-io/mongodb-interview-questions
https://devinterview.io/
https://github.com/Devinterview-io/mongodb-interview-questions/stargazers
https://github.com/Devinterview-io/mongodb-interview-questions/stargazers
https://github.com/Devinterview-io/mongodb-interview-questions/forks
https://github.com/Devinterview-io/mongodb-interview-questions/forks
https://github.com/Devinterview-io/mongodb-interview-questions/branches
https://github.com/Devinterview-io/mongodb-interview-questions/tags
https://github.com/Devinterview-io/mongodb-interview-questions/activity
https://github.com/Devinterview-io/mongodb-interview-questions/branches
https://github.com/Devinterview-io/mongodb-interview-questions/tags
https://github.com/Devinterview-io/mongodb-interview-questions/branches
https://github.com/Devinterview-io/mongodb-interview-questions/tags
https://github.com/Devinterview-io
https://github.com/Devinterview-io/mongodb-interview-questions/commits?author=Devinterview-io
https://github.com/Devinterview-io/mongodb-interview-questions/commit/feeb99bf7ab2d089241bcdca520245315aec4fa9
https://github.com/Devinterview-io/mongodb-interview-questions/commit/feeb99bf7ab2d089241bcdca520245315aec4fa9
https://github.com/Devinterview-io/mongodb-interview-questions/blob/main/README.md
https://github.com/Devinterview-io/mongodb-interview-questions/commit/feeb99bf7ab2d089241bcdca520245315aec4fa9
https://devinterview.io/questions/web-and-mobile-development/
https://devinterview.io/questions/web-and-mobile-development/
https://github.com/login?return_to=%2FDevinterview-io%2Fmongodb-interview-questions
https://github.com/login?return_to=%2FDevinterview-io%2Fmongodb-interview-questions
https://github.com/Devinterview-io/mongodb-interview-questions
https://github.com/Devinterview-io/mongodb-interview-questions/issues
https://github.com/Devinterview-io/mongodb-interview-questions/pulls
https://github.com/Devinterview-io/mongodb-interview-questions/actions
https://github.com/Devinterview-io/mongodb-interview-questions/projects
https://github.com/Devinterview-io/mongodb-interview-questions/security
https://github.com/Devinterview-io/mongodb-interview-questions/pulse
https://github.com/Devinterview-io/mongodb-interview-questions/commits/main/
https://devinterview.io/questions/web-and-mobile-development/mongodb-interview-questions

Uses replica sets for data redundancy, ensuring auto-failover in the event of a primary node failure.

Adopts sharding to distribute data across clusters, facilitating horizontal scaling for large datasets or

high-throughput requirements.

Engages in ad-hoc querying, making it easy to explore and analyze data.

Provides aggregation pipeline, empowering users to modify and combine data, akin to SQL GROUP BY.

Specialized query tools like Map-Reduce and Text Search cater to distinctive data processing needs.

Encourages a rich, document-based data model where you can embed related data within a single

structure.

This denormalization can enhance read performance and data retrieval simplicity.

Further augmented by several desktop and web-supported clients, MongoDB Atlas offers a seamless and

unified experience for database management.

Web-based MongoDB Compass handles query optimization and schema design.

Here is the Python code:

While both MongoDB and relational databases handle data, they do so in fundamentally different ways. Let's

explore the key distinctions.

High Availability & Horizontal Scalability

Advanced Querying

Embedded Data Management

Rich Tool Suite

Code Sample: Data Interaction with MongoDB

from pymongo import MongoClient

client = MongoClient() # Connects to default address and port
db = client.get_database('mydatabase')

Insert a record
collection = db.get_collection('mycollection')
inserted_id = collection.insert_one({'key1': 'value1', 'key2': 'value2'}).inserted_id

Query records
for record in collection.find({'key1': 'value1'}):
 print(record)

Update record
update_result = collection.update_one({'_id': inserted_id}, {'$set': {'key2': 'new_value'}})
print(f"Modified {update_result.modified_count} records")

Delete record
delete_result = collection.delete_one({'key1': 'value1'})
print(f"Deleted {delete_result.deleted_count} records")

2. How does MongoDB differ from relational databases?

Data Model

Relational Databases

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 2/16

Use tables with predefined schemas that enforce relationships and data types.

Often use normalization techniques to minimize data redundancy.

Stores data as flexible, schema-less sets of key-value pairs inside documents.

Relationships can be represented through embedded documents or referencing via keys, providing more

granular control and allowing for a more natural representation of real-world data.

Rely on ACID transactions to ensure data consistency.

Offers ACID guarantees at the document level, though transactions across multiple documents happen

within the same cluster to ensure consistency.

Provides multi-document transactions for more complex operations.

Use SQL, a declarative query language.

Employs JSON-like queries, which are imperative and resemble the structure of the data it operates on.

Traditionally use a vertical scaling approach, featuring limits on a single server's resources such as CPU,

storage, and memory.

Designed for horizontal scaling, making it easier to handle larger datasets and heavier loads by

distributing data across multiple servers. This scalability also supports cloud-based setups.

Can handle complex queries efficiently but might require multiple joins, potentially degrading

performance.

Optimized for quick CRUD operations and can efficiently handle large volumes of read and write requests.

MongoDB

Data Integrity

Relational Databases

MongoDB

Query Language

Relational Databases

MongoDB

Scalability

Relational Databases

MongoDB

Performance

Relational Databases

MongoDB

Indexing

Relational Databases

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 3/16

Tables can have a multitude of indexes, which can be a mix of clustered, non-clustered, unique, or

composite.

Collections can have several indexes, including single field, compound, and multi-key indexes.

Use joins to merge related data from different tables during a query, ensuring data integrity.

Offers embedded documents and manual reference to achieve similar results, but multi-collection joins

have performance and scalability considerations.

In MongoDB, data units are organized into collections, which group related documents. Each document

corresponds to a single record and maps to fields or key-value pairs.

Data in MongoDB is stored using a BSON (Binary JSON) format that can handle a maximum depth of 100

levels. This means a BSON object or element can be a document consisting of up to 100 sub-elements, such as

fields or values.

Here is a nested document:

In the example above, the "author" field is an embedded document (or sub-document), and the "comments"

field is an array of documents.

MongoDB

Data Joins

Relational Databases

MongoDB

3. Can you describe the structure of data in MongoDB?

JSON-Like Format

Example: Nested Document

{
 "_id": "123",
 "title": "My Blog Post",
 "author": {
 "name": "John Doe",
 "bio": "Tech enthusiast"
 },
 "comments": [
 {
 "user": "Alice",
 "text": "Great post"
 },
 {
 "user": "Bob",
 "text": "A bit lengthy!"
 }
]
}

Key Features

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 4/16

Ad-Hoc Schema: Documents in a collection don't need to have the same fields, providing schema

flexibility.

Atomicity at the Document Level: The ACID properties (Atomicity, Consistency, Isolation, Durability) of a

transaction, which guarantee that the modifications are successful or unsuccessful as a unit of work.

Index Support: Increases query performance.

Support for Embedded Data: You can nest documents and arrays.

Reference Resolution: It allows for processing references across documents. If a referenced document is

modified or deleted, any reference to it from another document also needs to be updated or deleted in a

multi-step atomic operation.

Sharding and Replication: For horizontal scaling and high availability.

1. One-to-One: Typically achieved with embedded documents.

2. One-to-Many (Parent-Child): This can be modelled using embedded documents in the parent.

3. One-to-Many (Referenced): Achieved through referencing, where several documents contain a field

referencing a single document. For better efficiency with frequent updates, consider referencing.

4. Many-to-Many: Modeled similarly to "One-to-Many" relationships.

5. You should avoid using “repeatable patterns”, such as storing data in separate arrays or collections, to

ensure smooth data manipulation and effective query operations.

For example, using separate collections for similar types of data based on a category like "users" and

"admins" instead of a single "roles" array with multiple documents.

The above best practice example prevents data redundancy and ensures consistency between similar

documents. Redundant storage or separating non-redundant data can lead to inconsistencies and increase

the effort required for maintenance.

In MongoDB, a document is the basic data storage unit. It's a JSON-like structure that stores data in key-value

pairs known as fields.

Each document:

Is a top-level entity, analogous to a row in a relational database.

Is composed of field-and-value pairs, where the value can be a variety of data types, including arrays or

sub-documents.

Has a unique _id or primary key that is indexed for fast lookups.

Here is the document structure:

Data Model Considerations

4. What is a Document in MongoDB?

Document Structure

{
 "_id": 1,
 "name": "John Doe",
 "age": 30,
 "email": "john.doe@email.com",
 "address": {
 "city": "Example",

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 5/16

Documents are grouped into collections. Each collection acts as a container with a unique namespace within

a database. Collections don't enforce a predefined schema, which allows for flexibility in data modeling.

1. Flexibility: Documents can be tailored to the specific data needs of the application without adherence to a

rigid schema.

2. Data Locality: Related data, like a user's profile and their posts, can be stored in one document,

enhancing performance by minimizing lookups.

3. JSON Familiarity: Documents, being JSON-like, enable easier transitions between application objects and

database entities.

4. Indexing: Fields within documents can be indexed, streamlining search operations.

5. Transaction Support: Modern versions of MongoDB offer ACID-compliant, multi-document transactions

that ensure data consistency.

Consider an online library. Instead of having separate tables for users, books, and checkouts as in a relational

database, you could store all the pertinent data about a user, including their checked-out books, in a single

document within a users collection:

This approach enables swift retrieval of all pertinent user information in one go.

Atomicity: While single-document operations are atomic by default in MongoDB, transactions and

atomicity guarantee apply to multi-document operations primarily.

Size Limitations: Documents can't exceed 16MB in size. In most cases, this limit should not be a practical

concern.

In MongoDB, data is stored in types of collections, ensuring flexibility and efficiency in data modeling.

 "zip": "12345"
 },
 "hobbies": ["golf", "reading"]
}

Collections

Key Advantages

Example Use Case

{
 "_id": 1,
 "name": "John Doe",
 "email": "john.doe@email.com",
 "address": { "city": "Example", "zip": "12345" },
 "checkedOutBooks": [
 { "bookId": 101, "dueDate": "2022-02-28" },
 { "bookId": 204, "dueDate": "2022-03-15" }
]
}

Considerations

5. How is data stored in collections in MongoDB?

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 6/16

Collections are the primary data storage structures in MongoDB, akin to tables in relational databases.

They are schema-less, meaning that documents within a collection can have varying structures. This

offers superior flexibility, while still allowing for structure validation through the use of JSON schema.

Documents serve as the unit of data storage in MongoDB. These are akin to rows in relational databases

or objects in languages such as JavaScript.

Documents are represented in BSON (Binary JSON) format, a binary representation closely mirroring

JSON's attribute-value data model.

Data in MongoDB is organized in a hierarchical structure, with each database having one or more

collections, each of which stores multiple documents, all of which can possess distinct structures.

MongoDB collections are designed to optimize data access rather than just serving as containers.

To maximize efficiency, it's crucial to design collections that cater to common query patterns.

By understanding the nuances of each collection type, you can better customize your MongoDB system

to cater to specific use-cases and performance requirements.

To effectively and iteratively store and manage comments, the AJAX Comments feature is engineered to

provide a blend of flexibility and ease of access.

It leverages JSON-like documents and the native power of MongoDB, such as rich indexing for efficient

interactions.

Tailored for sequential, feed-like content, such as posts from a social media platform or a messaging app.

It benefits greatly from the ordered nature of BSON documents, making sure newer posts are easy to

fetch.

Focusing on user-defined, diverse, and possibly unstructured details, the User Profile collection is an ideal

repository for self-descriptive user profiles.

The flexibility of schema allows for comprehensive storage with minimal overhead.

For persistent and global configurations, the Metadata collection provides a secure space to cache system

information.

Bolsters browsing and shopping activities by housing consistent, structured details related to products or

services on offer.

This attention to consistency helps in easy data retrieval and optimized user experiences.

Collection Basics

Documents

Data Organization Hierarchy

Key Data Principles

Types of Database Collections

AJAX Comments

Newsfeed Posts

User Profiles

Metadata

Product Catalog

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 7/16

Ideally suited to record system interactions and debugging info, the Logging collection maintains an

organized trail of system activity, nurturing a culture of informed decision-making.

A MongoDB database is a document-oriented, NoSQL database consisting of collections, each of which in

turn comprise documents.

A collection is a grouping of MongoDB documents. A collection is the equivalent of a table in a relational

database.

Advantages of Using Collections:

Flexibility: Each document in a collection can have its own set of fields. Structural changes are easier to

manage than in traditional, rigid SQL tables.

Scalability: Collections can be distributed across multiple servers or clusters to handle large data

volumes.

Synonymous with a record, a document is the main data storage unit in MongoDB. It is a set of key-value

pairs.

Key: The field name

Value: The data

Document-Key Pairs:

Each document maintains a unique ID, known as the object ID which is autogenerated. This ensures

every document is distinct.

Unlike SQL databases where each row of a table follows the same schema, a document can be more fluid,

accommodating fields as required.

Considerations When Choosing the Level of Normalization:

Optimized Reads: Normalization into separate collections may be beneficial if there are large amounts of

data that might not always have to be fetched.

Batch Inserts and Updates: Denormalization often leads to simpler write operations. If there will be a lot

of changes or inserts, denormalization can be more efficient.

Atomicity: When data that belongs together is split into different collections, ensuring atomicity can

become difficult.

A field is a single piece of data within a document. It's synonymous with a database column.

Field Type: MongoDB supports multiple field types, including arrays.

Logging

6. Describe what a MongoDB database is.

Core Concepts

1. Collection

2. Document

3. Field

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 8/16

Limit on Nested Fields: Documents can be nested, which is like being able to have sub-documents

within a main document. However, there is a depth limitation: you can't embed documents endlessly.

MongoDB is often regarded as schema-less, but a more accurate description is that it's flexible. While

documents within a single collection can have different fields, a robust schema design process is still

essential.

Adapting to Evolving Schemas:

Versioning: Managed schema changes and versioning in the application layer.

Schema Validation: Introduced in MongoDB 3.2, this feature allows for the application of structural rules

to documents.

Education and Training: Properly educating developers on the use of a database can minimize potential

misuse of its flexibility.

Use of Techniques to Ensure Data Integrity: Techniques such as double-entry bookkeeping can assure

data accuracy, especially when dealing with multiple, occasionally outdated records.

Normalization: Seeks to reduce redundancy and improve data consistency.

Denormalization: Emphasizes performance gains. Redundancies are knowingly introduced for optimized

and rapid reads.

Use Cases Dictate: Neither is definitively superior; their suitability depends on the specific use case.

The default port number for MongoDB is 27017. While it is possible to run multiple instances of MongoDB on

the same machine, each instance must have its unique port number to ensure they don't conflict.

MongoDB ensures high availability and disaster recovery through a robust data architecture and a distributed

system model. It integrates various mechanisms to maintain data integrity, uptime assurances, and data

redundancy.

1. Replica Sets: These are clusters of MongoDB nodes that use automatic failover to maintain data

consistency.

2. WiredTiger Storage Engine: It powers numerous features including data durability, in-memory storage,

and compression.

3. Oplog: Short for "operations log", it records all write operations in an append-only manner.

4. Write Concerns: These are rules that determine the level of acknowledgment required for write

operations.

5. Read Preferences: They define which nodes in a cluster can satisfy read operations.

6. Data Centers: Hardware resilience can be achieved by distributing nodes across multiple data centers.

Schema

Modeling vs. Tuning Approaches

7. What is the default port on which MongoDB listens?

8. How does MongoDB provide high availability and disaster recovery?

Key Components

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 9/16

7. Backups and Restores: MongoDB offers built-in mechanisms to backup and restore data, further aiding

in disaster recovery.

8. Monitoring Tools: For performance tracking and potential issue detection.

9. Technology Agnostic: Can deploy on multi-cloud, hybrid and on-premises architectures.

1. Restore: Achieved through the backup of data when the config server is the only component that is active

and accurate. This method doesn't consider data changes made after the backup was captured.

2. Oplog Replays: This involves using oplogs that track changes, ensuring that even after a cluster restart,

any missed transactions are reinstated.

3. Snapshotting: It is a consistent snapshot of data across the nodes in the replica set.

Here is the Python code:

Employ consistent and comprehensive backup strategies in conjunction with multi-faceted recovery

plans.

Indexes are employed in MongoDB to optimize database queries by providing faster access to data. Without

indexes, MongoDB performs full collection scans.

Single Field Index: The most basic form of index.

Compound Index: Generated across multiple fields; used for queries involving these fields.

Multikey Index: Specially designed for arrays or embedded documents.

Data Recovery Modes

Code Example: Write Concerns and Oplog

Import the MongoClient class from pymongo.
from pymongo import MongoClient

Establish connection to the MongoDB server using MongoClient.
client = MongoClient('mongodb://localhost:27017/')

Assign the test database to a variable
db = client.test

Assign the collection within the test database to a variable
collection = db.test_collection

Insert a document into the collection and set the write concern to 'majority'
result = collection.insert_one({'test_key': 'test_value'}, write_concern={'w': 'majority'})

Fetch the oplog entry associated with the insert operation.
oplog_cursor = db.local.oplog.rs.find({'ns': 'test.test_collection', 'op': 'i'})

Access the result and compare the count to ensure the operation was recorded in the oplog.
operation_count = oplog_cursor.count()

Recommendations

9. What are indexes in MongoDB, and why are they used?

Common Types of Indexes in MongoDB

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 10/16

Batch Insert Operations on an Indexed Collection Describe any performance bottlenecks you anticipate.

Text Index: Suited for text searches, often leveraging stemming and stop words.

Unique Explain in which situations it's beneficial to manage a unique index. Discard icon GEO Index Describe

the purpose of this index type and the type of queries it can optimize.

TTL (Time-to-Live) Index: Deletes documents after a specified duration, suitable for logs and cached data.

Index Overuse: Too many indexes can degrade write performance.

Index Size: Larger indexes consume more RAM and might slow down read and write operations.

Index Inefficiency: Inaccurate or non-selective index usage can render them ineffective.

Write Penalties: Indexes incur an overhead during writes, impacting their efficiency in write-heavy

systems.

Index Maintenance: Regular maintenance, like rebuilding or reorganizing indexes, is often necessary.

Workload Misalignment: An index might not be beneficial if it's not aligned with the actual query

workload.

Make sure to keep the indexes required and remove any unnecessary ones.

The _id Field in MongoDB serves as a primary key and provides several key functionalities:

Uniqueness Guarantee: Each document must have a unique _id , which ensures data integrity.

Automatic Indexing: Automated indexing based on _id enhances query efficiency.

Inherent Timestamp: The _id can have an embedded timestamp, useful for time-based operations.

For instance, with an ObjectId, the first 8 characters represent a 4 byte timestamp:

timestamp = substr(ObjectId, 0, 8)

Concurrency Control: If multiple write operations with the same _id occur simultaneously, MongoDB

uses a technique called last-write wins to manage the conflict:

The document with the most recent _id value, or timestamp if using an ObjectId, supersedes the others.

Modify and Return: When executing an operation to insert a new document or find & modify an existing

one, you can request to return the modified document and its _id .

While MongoDB provides automatic ObjectId generation, documents can also use custom values.

Custom Representations: Unleash flexibility by using custom strings, numbers, or other valid BSON types

for the _id field.

Controlled Uniformity: Design your own _id strategy to align with data, such as employing natural keys

for documents originating from specific, external sources.

Migrate with Care: Once an application is live, altering the structure can be intricate. Transition plans are

vital for a seamless shift.

Common Performance Bottlenecks with Indexes

10. What is the role of the id field in MongoDB documents?

ObjectId vs. Custom _id

README

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 11/16

Custom Indexing: Managing an index on a uniquely generated custom _id turns the data into a

compact, high-throughput structure.

The choice between automatic ObjectId and custom _id values links back to the intended data model, data

access patterns, and specific domain requirements.

While using the automatic ObjectId brings about benefits like ease of use and embedded timestamp, custom

_id generation provides finer control and helps in scenarios where a specific data structure is favored or

where external data sources need to be integrated.

The process for creating a new collection in MongoDB is simple and instantaneous.

MongoDB collections are schemaless, leading to immediate collection creation.

Document structure and content drive schema design.

No predefined schema requirements allow for dynamic, evolving data models.

1. Select the Database: Ensure you are connected to the intended database for the collection's creation.

Switch to the desired database using use in the mongo shell or select the database programmatically in

your driver's API.

2. Perform a Write Operation: The new collection is created the moment you execute a write operation

such as insert , update , or save .

3. Check Collection Existence (Optional): While not necessary for the creation process, you can verify the

collection is created using the listCollections method.

To insert a document into a MongoDB collection, you can use the insertOne() method, which accepts the

document as an argument:

Alternatively, you can use the insertOne() method, supply an array of documents with insertMany() :

Schema Design and the _id Field

11. How do you create a new MongoDB collection?

Benefits of Instantaneous Creation

Steps to Create a Collection

12. What is the syntax to insert a document into a MongoDB collection?

db.collectionName.insertOne({
 key1: "value1",
 key2: 2,
 key3: [1, 2, 3],
 key4: { nestedKey: "nestedValue" }
});

db.collectionName.insertMany([
 { key: "value1" },
 { key: "value2" }
]);

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 12/16

To read data from a MongoDB collection, you use the find method with various options for querying and

data manipulation.

find(filter, projection): Retrieves documents based on filter conditions. You can specify which fields to

include or exclude in the result (projection).

findOne(filter, projection): Similar to find but retrieves only the first matching document.

distinct(field, filter): Returns a list of distinct values for a specific field, optionally filtered.

Comparison: $eq , $gt , $lt , $in , $nin , etc.

Logical: $and , $or , $not , $nor , etc.

Element: $exists , $type

Evaluation: $regex , $mod , $text

Geospatial: $geoNear , $geoWithin , etc.

MongoDB also provides the aggregation framework for complex operations, using a pipeline of various

stages like match , group , sort , limit , etc.

Here is a Python code:

Here is a Python code:

13. Describe how to read data from a MongoDB collection.

Key Methods

Query Operators

Aggregation

Example: Basic Find Query

import pymongo

client = pymongo.MongoClient("mongodb://localhost:27017/")
db = client["mydatabase"]
collection = db["mycollection"]

Retrieve all documents
all_documents = collection.find()

Alternatively, you can iterate through the cursor:
for doc in all_documents:
 print(doc)

Example: Querying with Filters

Let's say we have the following documents in the collection:
[{
"name": "John",
"age": 30,
"country": "USA"
},
{
"name": "Jane",
"age": 25,
"country": "Canada"
}]

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 13/16

Projection helps control the fields returned. It uses a dictionary where fields to include are marked with 1,

and those to exclude with 0.

For instance, {"name": 1, "age": 1, "_id": 0} only includes name and age while excluding _id :

Here is a Python code:

sort , skip , and limit help in reordering, pagination, and limiting the result size.

Here is a Python code:

Here is a Python code:

Retrieve documents where the name is "John"
john_doc = collection.find_one({"name": "John"})
print(john_doc) # Output: {"name": "John", "age": 30, "country": "USA"}

Retrieve documents where age is greater than or equal to 25 and from country "USA"
filter_criteria = {"age": {"$gte": 25}, "country": "USA"}
docs_matching_criteria = collection.find(filter_criteria)
for doc in docs_matching_criteria:
 print(doc)
 # Output: {"name": "John", "age": 30, "country": "USA"}

Projection

Retrieve the name and age fields, ignoring the _id field
docs_with_limited_fields = collection.find({}, {"name": 1, "age": 1, "_id": 0})
for doc in docs_with_limited_fields:
 print(doc)
 # Output: {"name": "John", "age": 30}
 # {"name": "Jane", "age": 25}

Sort, Skip, and Limit

Sort all documents by age in descending order
documents_sorted_by_age = collection.find().sort("age", -1)

Skip the first two documents and retrieve the rest
documents_after_skipping = collection.find().skip(2)

Limit the number of documents returned to 3
limited_documents = collection.find().limit(3)

Distinct Values

Suppose, the collection has a "country" field for each document

Get a list of distinct countries
distinct_countries = collection.distinct("country")
print(distinct_countries) # Output: ["USA", "Canada"]

Indexes

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 14/16

Indexes improve read performance. Ensure to use appropriate indexes for frequent and complex queries to

speed up data retrieval. If the queries differ from the indexing pattern or if the collection is small, the gain

from indexing might be insignificant, or it could even affect the write performance of the database. Choose an

indexing strategy based on your data and usage patterns.

For example, if you frequently query documents based on their "country" field, consider creating an index on

that field:

Here is a Python, PyMongo code:

This would make lookups based on the "country" field more efficient.

MongoDB offers several ways to update documents (equivalent to SQL's "rows"). Let’s look at the most

common methods.

Replace: Entire document is updated. This is the closest equivalence to SQL's UPDATE statement.

Update: For selective field updates, you use $set , $inc , $push , $unset , and more. This resembles

SQL's UPDATE with selective column updates.

Method: db.collectionName.updateOne()

Code:

Use-Case: When replacing an entire document isn't needed. For example, when changing a user's email

address.

Method: db.collectionName.replaceOne()

Code:

Use-Case: When an entire document needs updating or replacing, such as a product detail or a user’s

information.

collection.create_index("country")

14. Explain how to update documents in MongoDB.

Update Methods

Replace & Update in MongoDB

Top-Down Approach Using Replace

db.collectionName.updateOne(
 {"name": "John Doe"},
 {$set: {"age": 30}}
);

Bottom-Up Approach Using Update + $set

db.collectionName.replaceOne(
 {"name": "John Doe"},
 {"name": "John Doe", "age": 30}
);

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 15/16

MongoDB offers several methods for deleting documents.

1. deleteOne(): Deletes the first matched document.

2. deleteMany(): Removes all matching documents.

3. remove(): Legacy function; use deleteOne() or deleteMany() instead.

For deleteOne() , the syntax is:

db.collection.deleteOne({filter}, {options})

For deleteMany() , the syntax is:

db.collection.deleteMany({filter}, {options})

Here is the MongoDB shell script:

Releases

No releases published

Packages

No packages published

15. What are the MongoDB commands for deleting documents?

Deletion Methods in MongoDB

General Syntax

Code Example: Deleting One or Many

// Connect to the database
use myDB;

// Delete a single document from 'myCollection'
db.myCollection.deleteOne({ name: "Document1" });

// Delete all documents from 'myCollection' with the condition 'age' greater than 25
db.myCollection.deleteMany({ age: { $gt: 25 } });

Explore all 100 answers here 👉 Devinterview.io - MongoDB

3/20/25, 3:46 AM GitHub - Devinterview-io/mongodb-interview-questions: 🟣 MongoDB interview questions and answers to hel…

https://github.com/Devinterview-io/mongodb-interview-questions 16/16

https://github.com/Devinterview-io/mongodb-interview-questions/releases
https://github.com/users/Devinterview-io/packages?repo_name=mongodb-interview-questions
https://devinterview.io/questions/web-and-mobile-development/mongodb-interview-questions

